Integration of 2 log(secx)e
Integration is the process of finding the antiderivative of a function. The integration of 2 log(secx)e can be solved by using the substitution method.
Step 1: Use substitution
Let u = sec(x). Therefore, du/dx = sec(x)tan(x)
Using the identity sec2(x) - 1 = tan2(x), we get:
tan2(x) + 1 = sec2(x)
tan2(x) = sec2(x) - 1
tan2(x) = u2 - 1
tan(x)sec(x)dx = du
Step 2: Substitute the value of u and du
The given expression can now be written as:
2 log(u)e sec(x)tan(x)dx
2 log(u)e du
Step 3: Integrate the expression
Now we can integrate the expression:
2 ∫ log(u)e du
Using the power rule of integration:
2 [(u log(u)e) - ∫ u (1/e) du]
2 [(u log(u)e) - (u/e) + C]
Step 4: Substitute the value of u
Substituting the value of u = sec(x), we get:
2 [sec(x) log(sec(x))e - (sec(x)/e) + C]
Final Answer:
The integration of 2 log(secx)e is 2 [sec(x) log(sec(x))e - (sec(x)/e) + C].