Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev

GATE Computer Science Engineering(CSE) 2022 Mock Test Series

Computer Science Engineering (CSE) : Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev

The document Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev is a part of the Computer Science Engineering (CSE) Course GATE Computer Science Engineering(CSE) 2022 Mock Test Series.
All you need of Computer Science Engineering (CSE) at this link: Computer Science Engineering (CSE)

Lagrange’s Mean Value Theorem

Suppose f(x) be a function satisfying three conditions:

1) f(x) is Continuous in the closed interval a <= x <= b

2) f(x) is differentiable in the open interval a < x < b

Then according to Lagrange’s Theorem, there exists at least one point ‘c’ in the open interval (a, b) such that:

f ‘ (c) = [f(a) – f(b)] / (b – a)

We can visualize Lagrange’s Theorem by the following figure

Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev

In simple words, Lagrange’s theorem says that if there is a path between two points A(a, f(a)) and B(b, f(a)) in a 2-D plain then there will be at least one point ‘c’ on the path such that the slope of the tangent at point ‘c’, i.e., (f ‘ (c)) is equal to the average slope of the path, i.e., f ‘ (c) = [f(a) – f(b)] / (b – a)

Mean Value Theorem | Rolle’s Theorem

Suppose f(x) be a function satisfying three conditions:

1) f(x) is Continuous in the closed interval a <= x <= b

2) f(x) is differentiable in the open interval a < x < b

3) f(a) = f(b)

Then according to Rolle’s Theorem, there exists at least one point ‘c’ in the open interval (a, b) such that:

f ‘ (c) = 0

We can visualize Rolle’s theorem from the figure(1)

Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev  

Figure(1)

In the above figure the function satisfies all three conditions given above. So, we can apply Rolle’s theorem, according to which there exists at least one point ‘c’ such that:

f ‘ (c) = 0

which means that there exists a point at which the slope of the tangent at that is equal to 0. We can easily see that at point ‘c’ slope is 0.

Similarly, there could be more than one points at which slope of tangent at those points will be 0. Figure(2) is one of the example where exists more than one point satisfying Rolle’s theorem.

Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev

Figure(2)

Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Related Searches

Summary

,

Viva Questions

,

Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev

,

ppt

,

Previous Year Questions with Solutions

,

Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev

,

shortcuts and tricks

,

Sample Paper

,

Exam

,

pdf

,

mock tests for examination

,

Mean Value Theorem Computer Science Engineering (CSE) Notes | EduRev

,

Important questions

,

Semester Notes

,

video lectures

,

Objective type Questions

,

past year papers

,

Extra Questions

,

study material

,

MCQs

,

Free

,

practice quizzes

;