Analysis of Frames Without Sidesway
The general procedure for analysis of frames without sidesway is same as for continous beams (lesson 12). This is illustrated in the following two examples.
Example 1
Draw the bending moment diagram for the follwing frame. EI is constant for all members.
Fig. 13.2.
Step 1: Fixed end Moments
\[M{}_{FAB} =-{{5 \times 4} \over 8}=-2.5{\rm{kNm}}\] ; \[M{}_{FCB} = {{7.5 \times {{10}^2}} \over {12}} = 62.5{\rm{kNm}}\]
\[M{}_{FAB} = M{}_{FBA} = M{}_{FCD} = M{}_{FDC}=0\]
Step 2: Slope-Deflection Equaitons
Since A and D are fixed ends, θA = θD = 0
Since there is no support settlement, δ = 0
For span AB,
\[{M_{AB}} = {M_{FAB}} + {{2EI} \over {{L_{AB}}}}\left( {2{\theta _A} + {\theta _B} - {{3\delta } \over {{L_{AB}}}}} \right) = 0.4EI{\theta _B}\] (13.1)
\[{M_{BA}} = {M_{FBA}} + {{2EI} \over {{L_{AB}}}}\left( {{\theta _A} + 2{\theta _B} - {{3\delta } \over {{L_{AB}}}}} \right) = 0.8EI{\theta _B}\] (13.2)
For span BC,
\[{M_{BC}} = {M_{FBC}} + {{2EI} \over {{L_{BC}}}}\left( {2{\theta _B} + {\theta _C} - {{3\delta } \over {{L_{BC}}}}} \right)=-62.5 + 0.2EI\left( {2{\theta _B} + {\theta _C}} \right)\] (13.3)
\[{M_{CB}} = {M_{FCB}} + {{2EI} \over {{L_{BC}}}}\left( {2{\theta _C} + {\theta _B} - {{3\delta } \over {{L_{BC}}}}} \right) = 62.5 + 0.2EI\left( {{\theta _B} + 2{\theta _C}} \right)\] (13.4)
For span CD,
\[{M_{CD}} = {M_{FCD}} + {{2EI} \over {{L_{CD}}}}\left( {2{\theta _C} + {\theta _D} - {{3\delta } \over {{L_{CD}}}}} \right) = 0.8EI{\theta _C}\] (13.5)
\[{M_{DC}} = {M_{FDC}} + {{2EI} \over {{L_{CD}}}}\left( {{\theta _C} + 2{\theta _D} - {{3\delta } \over {{L_{CD}}}}} \right) = 0.4EI{\theta _C}\] (13.6)
Step 3: Equilibrium Equaitons
At B,
\[{M_{BA}} + {M_{BC}} = 0 \Rightarrow 0.8EI{\theta _B} - 62.5 + 0.2EI\left( {2{\theta _B} + {\theta _C}} \right)=0\]
\[\Rightarrow 1.2EI{\theta _B} + 0.2EI{\theta _C} - 62.5 = 0\] (13.7)
At C,
\[{M_{CB}} + {M_{CD}} = 0 \Rightarrow 62.5 + 0.2EI\left( {{\theta _B} + 2{\theta _C}} \right) + 0.8EI{\theta _C}=0\]
\[\Rightarrow 0.2EI{\theta _B} + 1.2EI{\theta _C} + 62.5 = 0\] (13.8)
Solving equations (7) and (8),
\[{\theta _B} = {{62.5} \over {EI}}\] and \[{\theta _C}=-{{62.5} \over {EI}}\]
Step 4: End Moment calculation
Substituting, θB and θC into equations (1) – (6), we have,
\[{M_{AB}} = 0.4EI{\theta _B} = 25{\rm{ kNm}}\]
\[{M_{BA}} = 0.8EI{\theta _B} = 50{\rm{ kNm}}\]
\[{M_{BC}}=-62.5 + 0.2EI\left( {2{\theta _B} + {\theta _C}} \right) =-50{\rm{ kNm}}\]
\[{M_{CB}} = 62.5 + 0.2EI\left( {{\theta _B} + 2{\theta _C}} \right) = 50{\rm{ kNm}}{M_{CB}} = 62.5 + 0.2EI\left( {{\theta _B} + 2{\theta _C}} \right) = 50{\rm{ kNm}}\]
\[{M_{CD}} = 0.8EI{\theta _C} =-50{\rm{ kNm}}\]
\[{M_{DC}} = 0.4EI{\theta _C} =-25{\rm{ kNm}}\]
Fig. 13.3. Bending Moment Diagram.
Example 2
Draw the bending moment diagram for the follwing frame. EI is constant for all members.
Fig.13.4.
Step 1: Fixed end Moments
\[M{}_{FAB}=-{{5 \times 4} \over 8}=-2.5{\rm{kNm}}\] ; \[M{}_{FBA} = {{5 \times 4} \over 8} = 2.5{\rm{kNm}}\]
\[M{}_{FBC}=-{{4 \times 4} \over 8}=-2{\rm{kNm}}\] ; \[M{}_{FCD}=-{{4 \times 4} \over 8}=-2{\rm{kNm}}\]
Step 2: Slope-Deflection Equaitons
Since A and C are fixed ends, θA = θC = 0
Since there is no support settlement, δ = 0
For span AB,
\[{M_{AB}} = {M_{FAB}} + {{2EI} \over {{L_{AB}}}}\left( {2{\theta _A} + {\theta _B} - {{3\delta } \over {{L_{AB}}}}} \right) =-2.5 + 0.5EI{\theta _B}\] (13.9)
\[{M_{BA}} = {M_{FBA}} + {{2EI} \over {{L_{AB}}}}\left( {{\theta _A} + 2{\theta _B} - {{3\delta } \over {{L_{AB}}}}} \right) = 2.5 + EI{\theta _B}\] (13.10)
For span BC,
\[{M_{BC}} = {M_{FBC}} + {{2EI} \over {{L_{BC}}}}\left( {2{\theta _B} + {\theta _C} - {{3\delta } \over {{L_{BC}}}}} \right) =-2 + EI{\theta _B}\] (13.11)
\[{M_{CB}} = {M_{FCB}} + {{2EI} \over {{L_{BC}}}}\left( {2{\theta _C} + {\theta _B} - {{3\delta } \over {{L_{BC}}}}} \right) = 2 + 0.5EI{\theta _B}\] (13.12)
For span BD,
\[{M_{BD}} =-{{1.5 \times {2^2}} \over 2} = - 3{\rm{ kNm}}\] (13.3)
Step 3: Equilibrium Equaitons
At B,
\[{M_{BA}} + {M_{BC}} + {M_{BD}} = 0 \Rightarrow 2.5 + EI{\theta _B} - 2 + EI{\theta _B} - 3 = 0\]
\[\Rightarrow 2EI{\theta _B} - 19.5 = 0 \Rightarrow {\theta _B} = {{1.25} \over {EI}}\]
Step 4: End Moment calculation
Substituting, θB into equations (9) – (12), we have,
\[{M_{AB}} =-2.5 + 0.5EI{\theta _B} =-1.875{\rm{ kNm}}\]
\[{M_{BA}} = 2.5 + EI{\theta _B} = 3.75{\rm{ kNm}}\]
\[{M_{BC}} =-2 + EI{\theta _B} =-0.75{\rm{kNm}}\]
\[{M_{CB}} = 2 + 0.5EI{\theta _B} = 2.265{\rm{ kNm}}\]
Fig.13.5. Bending Moment Diagram.
1. What is the slope deflection equation in frame analysis? |
2. How is the displacement method used in frame analysis? |
3. What are the advantages of using the displacement method in frame analysis? |
4. What are the limitations of the slope deflection equation in frame analysis? |
5. How can the displacement method be applied in agricultural engineering? |
|
Explore Courses for Agricultural Engineering exam
|