NEET Exam  >  NEET Notes  >  Physics Class 11  >  HC Verma Solutions: Chapter 29 - Electric Field & Potential

HC Verma Solutions: Chapter 29 - Electric Field & Potential | Physics Class 11 - NEET PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


29.1
CHAPTER – 29
ELECTRIC FIELD AND POTENTIAL
EXERCISES
1. ?
0
= 
2
2
m Newton
Coulomb
= l
1
M
–1
L
–3
T
4
? F = 
2
2 1
r
q kq
2. q
1
= q
2
= q = 1.0 C distance between = 2 km = 1 × 10
3
m
so, force = 
2
2 1
r
q kq
F = 
2 3
9
) 10 2 (
1 1 ) 10 9 (
?
? ? ?
= 
6 2
9
10 2
10 9
?
?
= 2,25 × 10
3
N
The weight of body = mg = 40 × 10 N = 400 N
So, 
es arg ch between force
body of wt
= 
1
2
3
10 4
10 25 . 2
?
?
?
?
?
?
?
?
?
?
?
= (5.6)
–1
= 
6 . 5
1
So, force between charges = 5.6 weight of body.
3. q = 1 C, Let the distance be ?
F = 50 × 9.8 = 490
F = 
2
2
Kq
?
? 490 = 
2
2 9
1 10 9
?
? ?
or ?
2
= 
490
10 9
9
?
= 18.36 × 10
6 
? ? = 4.29 ×10
3
m ?
4. charges ‘q’ each, AB = 1 m
wt, of 50 kg person = 50 × g = 50 × 9.8 = 490 N
F
C
= 
2
2 1
r
q kq
?
2
2
r
kq
= 490 N
? q
2
= 
9
2
10 9
r 490
?
?
= 
9
10 9
1 1 490
?
? ?
? q = 
9
10 4 . 54
?
? = 23.323 × 10
–5
coulomb ˜ 2.3 × 10
–4
coulomb
5. Charge on each proton = a= 1.6 × 10
–19
coulomb
Distance between charges = 10 × 10
–15
metre = r
Force = 
2
2
r
kq
= 
30
38 9
10
10 6 . 1 6 . 1 10 9
?
?
? ? ? ?
= 9 × 2.56 × 10 = 230.4 Newton
6. q
1
= 2.0 × 10
–6
q
2
= 1.0 × 10
–6
r = 10 cm = 0.1 m
Let the charge be at a distance x from q
1
F
1
= 
2
1
q Kq
?
F
2
= 
2
2
) 1 . 0 (
kqq
? ?
= 
2
9 6
q 10 10 2 9 . 9
?
? ? ? ?
?
Now since the net force is zero on the charge q. ? f
1
= f
2
?
2
1
q kq
?
= 
2
2
) 1 . 0 (
kqq
? ?
? 2(0.1 – ?)
2
= ?
2
  ? 2 (0.1 – ?) = ?
? ? = 
2 1
2 1 . 0
?
= 0.0586 m = 5.86 cm ˜ 5.9 cm From larger charge
q 2
(0.1–x) m x m
q
q 1
10 cm
Page 2


29.1
CHAPTER – 29
ELECTRIC FIELD AND POTENTIAL
EXERCISES
1. ?
0
= 
2
2
m Newton
Coulomb
= l
1
M
–1
L
–3
T
4
? F = 
2
2 1
r
q kq
2. q
1
= q
2
= q = 1.0 C distance between = 2 km = 1 × 10
3
m
so, force = 
2
2 1
r
q kq
F = 
2 3
9
) 10 2 (
1 1 ) 10 9 (
?
? ? ?
= 
6 2
9
10 2
10 9
?
?
= 2,25 × 10
3
N
The weight of body = mg = 40 × 10 N = 400 N
So, 
es arg ch between force
body of wt
= 
1
2
3
10 4
10 25 . 2
?
?
?
?
?
?
?
?
?
?
?
= (5.6)
–1
= 
6 . 5
1
So, force between charges = 5.6 weight of body.
3. q = 1 C, Let the distance be ?
F = 50 × 9.8 = 490
F = 
2
2
Kq
?
? 490 = 
2
2 9
1 10 9
?
? ?
or ?
2
= 
490
10 9
9
?
= 18.36 × 10
6 
? ? = 4.29 ×10
3
m ?
4. charges ‘q’ each, AB = 1 m
wt, of 50 kg person = 50 × g = 50 × 9.8 = 490 N
F
C
= 
2
2 1
r
q kq
?
2
2
r
kq
= 490 N
? q
2
= 
9
2
10 9
r 490
?
?
= 
9
10 9
1 1 490
?
? ?
? q = 
9
10 4 . 54
?
? = 23.323 × 10
–5
coulomb ˜ 2.3 × 10
–4
coulomb
5. Charge on each proton = a= 1.6 × 10
–19
coulomb
Distance between charges = 10 × 10
–15
metre = r
Force = 
2
2
r
kq
= 
30
38 9
10
10 6 . 1 6 . 1 10 9
?
?
? ? ? ?
= 9 × 2.56 × 10 = 230.4 Newton
6. q
1
= 2.0 × 10
–6
q
2
= 1.0 × 10
–6
r = 10 cm = 0.1 m
Let the charge be at a distance x from q
1
F
1
= 
2
1
q Kq
?
F
2
= 
2
2
) 1 . 0 (
kqq
? ?
= 
2
9 6
q 10 10 2 9 . 9
?
? ? ? ?
?
Now since the net force is zero on the charge q. ? f
1
= f
2
?
2
1
q kq
?
= 
2
2
) 1 . 0 (
kqq
? ?
? 2(0.1 – ?)
2
= ?
2
  ? 2 (0.1 – ?) = ?
? ? = 
2 1
2 1 . 0
?
= 0.0586 m = 5.86 cm ˜ 5.9 cm From larger charge
q 2
(0.1–x) m x m
q
q 1
10 cm
Electric Field and Potential
29.2
7. q
1
= 2 ×10
–6
c q
2
= – 1 × 10
–6
c r = 10 cm = 10 × 10
–2
m
Let the third charge be a so, F-
AC
= – F-
BC
?
2
1
1
r
kQq
= 
2
2
2
r
KQq ?
?
2
6
) 10 (
10 2
? ?
?
?
= 
2
6
10 1
?
?
?
? 2 ?
2
= (10 + ?)
2
? 2 ? = 10 + ? ? ?( 2 - 1) = 10 ? ? =
1 414 . 1
10
?
?
= 24.14 cm ?
So, distance = 24.14 + 10 = 34.14 cm from larger charge ?
8. Minimum charge of a body is the charge of an electron
Wo, q = 1.6 × 10
–19
c ? = 1 cm = 1 × 10
–2
cm 
So, F = 
2
2 1
r
q kq
= 
2 2
19 19 9
10 10
10 10 6 . 1 6 . 1 10 9
? ?
? ?
?
? ? ? ? ?
= 23.04 × 10
–38+9+2+2
= 23.04 × 10
–25
= 2.3 × 10
–24
?
9. No. of electrons of 100 g water = 
18
100 10 ?
= 55.5 Nos Total charge = 55.5
No. of electrons in 18 g of H
2
O = 6.023 × 10
23
× 10 = 6.023 × 10
24
No. of electrons in 100 g  of H
2
O = 
18
100 10 023 . 6
24
? ?
= 0.334 × 10
26
= 3.334 × 10
25
Total charge = 3.34 × 10
25
× 1.6 × 10
–19
= 5.34 × 10
6
c
10. Molecular weight of H
2
O = 2 × 1 × 16 = 16
No. of electrons present in one molecule of H
2
O = 10
18 gm of H
2
O has 6.023 × 10
23
molecule
18 gm of H
2
O has 6.023 × 10
23
× 10 electrons
100 gm of H
2
O has 100
18
10 023 . 6
24
?
?
electrons
So number of protons = 
18
10 023 . 6
26
?
protons (since atom is electrically neutral)
Charge of protons = 
18
10 023 . 6 10 6 . 1
26 19
? ? ?
?
coulomb = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Charge of electrons = = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Hence Electrical force = 
2 2
7 7
9
) 10 10 (
18
10 023 . 6 6 . 1
18
10 023 . 6 6 . 1
10 9
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
? ?
?
= 
25
10 023 . 6 6 . 1
18
023 . 6 8
? ? ?
?
= 2.56 × 10
25
Newton
11. Let two protons be at a distance be 13.8 femi
F = 
30 2
38 9
10 ) 8 . 14 (
10 6 . 1 10 9
?
?
?
? ? ?
= 1.2 N
12. F = 0.1 N
r = 1 cm = 10
–2
(As they rubbed with each other. So the charge on each sphere are equal)
So, F = 
2
2 1
r
q kq
? 0.1 = 
2 2
2
) 10 (
kq
?
? q
2
= 
9
4
10 9
10 1 . 0
?
?
?
? q
2
= 
14
10
9
1
?
? ? q = 
7
10
3
1
?
?
1.6 × 10
–19
c Carries by 1 electron 1 c carried by 
19
10 6 . 1
1
?
?
0.33 × 10
–7
c carries by 
7
19
10 33 . 0
10 6 . 1
1
?
?
? ?
?
= 0.208 × 10
12
= 2.08 × 10
11
+
+
+
–
–
–
–
+
+
A
10 × 10
–10
m
C
B
a
2 × 10
–6
c
–1 × 10
–6
c
Page 3


29.1
CHAPTER – 29
ELECTRIC FIELD AND POTENTIAL
EXERCISES
1. ?
0
= 
2
2
m Newton
Coulomb
= l
1
M
–1
L
–3
T
4
? F = 
2
2 1
r
q kq
2. q
1
= q
2
= q = 1.0 C distance between = 2 km = 1 × 10
3
m
so, force = 
2
2 1
r
q kq
F = 
2 3
9
) 10 2 (
1 1 ) 10 9 (
?
? ? ?
= 
6 2
9
10 2
10 9
?
?
= 2,25 × 10
3
N
The weight of body = mg = 40 × 10 N = 400 N
So, 
es arg ch between force
body of wt
= 
1
2
3
10 4
10 25 . 2
?
?
?
?
?
?
?
?
?
?
?
= (5.6)
–1
= 
6 . 5
1
So, force between charges = 5.6 weight of body.
3. q = 1 C, Let the distance be ?
F = 50 × 9.8 = 490
F = 
2
2
Kq
?
? 490 = 
2
2 9
1 10 9
?
? ?
or ?
2
= 
490
10 9
9
?
= 18.36 × 10
6 
? ? = 4.29 ×10
3
m ?
4. charges ‘q’ each, AB = 1 m
wt, of 50 kg person = 50 × g = 50 × 9.8 = 490 N
F
C
= 
2
2 1
r
q kq
?
2
2
r
kq
= 490 N
? q
2
= 
9
2
10 9
r 490
?
?
= 
9
10 9
1 1 490
?
? ?
? q = 
9
10 4 . 54
?
? = 23.323 × 10
–5
coulomb ˜ 2.3 × 10
–4
coulomb
5. Charge on each proton = a= 1.6 × 10
–19
coulomb
Distance between charges = 10 × 10
–15
metre = r
Force = 
2
2
r
kq
= 
30
38 9
10
10 6 . 1 6 . 1 10 9
?
?
? ? ? ?
= 9 × 2.56 × 10 = 230.4 Newton
6. q
1
= 2.0 × 10
–6
q
2
= 1.0 × 10
–6
r = 10 cm = 0.1 m
Let the charge be at a distance x from q
1
F
1
= 
2
1
q Kq
?
F
2
= 
2
2
) 1 . 0 (
kqq
? ?
= 
2
9 6
q 10 10 2 9 . 9
?
? ? ? ?
?
Now since the net force is zero on the charge q. ? f
1
= f
2
?
2
1
q kq
?
= 
2
2
) 1 . 0 (
kqq
? ?
? 2(0.1 – ?)
2
= ?
2
  ? 2 (0.1 – ?) = ?
? ? = 
2 1
2 1 . 0
?
= 0.0586 m = 5.86 cm ˜ 5.9 cm From larger charge
q 2
(0.1–x) m x m
q
q 1
10 cm
Electric Field and Potential
29.2
7. q
1
= 2 ×10
–6
c q
2
= – 1 × 10
–6
c r = 10 cm = 10 × 10
–2
m
Let the third charge be a so, F-
AC
= – F-
BC
?
2
1
1
r
kQq
= 
2
2
2
r
KQq ?
?
2
6
) 10 (
10 2
? ?
?
?
= 
2
6
10 1
?
?
?
? 2 ?
2
= (10 + ?)
2
? 2 ? = 10 + ? ? ?( 2 - 1) = 10 ? ? =
1 414 . 1
10
?
?
= 24.14 cm ?
So, distance = 24.14 + 10 = 34.14 cm from larger charge ?
8. Minimum charge of a body is the charge of an electron
Wo, q = 1.6 × 10
–19
c ? = 1 cm = 1 × 10
–2
cm 
So, F = 
2
2 1
r
q kq
= 
2 2
19 19 9
10 10
10 10 6 . 1 6 . 1 10 9
? ?
? ?
?
? ? ? ? ?
= 23.04 × 10
–38+9+2+2
= 23.04 × 10
–25
= 2.3 × 10
–24
?
9. No. of electrons of 100 g water = 
18
100 10 ?
= 55.5 Nos Total charge = 55.5
No. of electrons in 18 g of H
2
O = 6.023 × 10
23
× 10 = 6.023 × 10
24
No. of electrons in 100 g  of H
2
O = 
18
100 10 023 . 6
24
? ?
= 0.334 × 10
26
= 3.334 × 10
25
Total charge = 3.34 × 10
25
× 1.6 × 10
–19
= 5.34 × 10
6
c
10. Molecular weight of H
2
O = 2 × 1 × 16 = 16
No. of electrons present in one molecule of H
2
O = 10
18 gm of H
2
O has 6.023 × 10
23
molecule
18 gm of H
2
O has 6.023 × 10
23
× 10 electrons
100 gm of H
2
O has 100
18
10 023 . 6
24
?
?
electrons
So number of protons = 
18
10 023 . 6
26
?
protons (since atom is electrically neutral)
Charge of protons = 
18
10 023 . 6 10 6 . 1
26 19
? ? ?
?
coulomb = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Charge of electrons = = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Hence Electrical force = 
2 2
7 7
9
) 10 10 (
18
10 023 . 6 6 . 1
18
10 023 . 6 6 . 1
10 9
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
? ?
?
= 
25
10 023 . 6 6 . 1
18
023 . 6 8
? ? ?
?
= 2.56 × 10
25
Newton
11. Let two protons be at a distance be 13.8 femi
F = 
30 2
38 9
10 ) 8 . 14 (
10 6 . 1 10 9
?
?
?
? ? ?
= 1.2 N
12. F = 0.1 N
r = 1 cm = 10
–2
(As they rubbed with each other. So the charge on each sphere are equal)
So, F = 
2
2 1
r
q kq
? 0.1 = 
2 2
2
) 10 (
kq
?
? q
2
= 
9
4
10 9
10 1 . 0
?
?
?
? q
2
= 
14
10
9
1
?
? ? q = 
7
10
3
1
?
?
1.6 × 10
–19
c Carries by 1 electron 1 c carried by 
19
10 6 . 1
1
?
?
0.33 × 10
–7
c carries by 
7
19
10 33 . 0
10 6 . 1
1
?
?
? ?
?
= 0.208 × 10
12
= 2.08 × 10
11
+
+
+
–
–
–
–
+
+
A
10 × 10
–10
m
C
B
a
2 × 10
–6
c
–1 × 10
–6
c
Electric Field and Potential
29.3
13. F = 
2
2 1
r
q kq
= 
2 10
19 19 9
) 10 75 . 2 (
10 10 6 . 1 6 . 1 10 9
?
? ?
?
? ? ? ? ?
= 
20
29
10 56 . 7
10 04 . 23
?
?
?
?
= 3.04 × 10
–9
14. Given: mass of proton = 1.67 × 10
–27
kg = M
p
k = 9 × 10
9
Charge of proton = 1.6 × 10
–19
c = C
p
G = 6.67 × 10
–11
Let the separation be ‘r’ 
Fe = 
2
2
p
r
) C ( k
, fg= 
2
2
p
r
) M ( G
Now, Fe : Fg = 
2
p
2
2
2
p
) M ( G
r
r
) C ( K
? = 
2 27 11
2 19 9
) 10 67 . 1 ( 10 67 . 6
) 0 ` 1 6 . 1 ( 10 9
? ?
?
? ? ?
? ? ?
= 9 × 2.56 × 10
38
˜ 1,24 ×10
38
15. Expression of electrical force F = 
2
r
kr
e C
?
?
Since e
–kr
is a pure number. So, dimensional formulae of F = 
2
r of formulae ensional dim
C of formulae ensional dim
Or, [MLT
–2
][L
2
] = dimensional formulae of C = [ML
3
T
–2
]
Unit of C = unit of force × unit of r
2
= Newton × m
2
= Newton–m
2
  
Since –kr is a number hence dimensional formulae of 
k = 
r of formulae entional dim
1
= [L
–1
] Unit of k = m
–1
16. Three charges are held at three corners of a equilateral trangle.
Let the charges be A, B and C. It is of length 5 cm or 0.05 m
Force exerted by B on A = F
1
force exerted by C on A = F
2
So, force exerted on A = resultant F
1
= F
2
? F = 
2
2
r
kq
= 
4
12 9
10 5 5
10 2 2 2 10 9
?
?
? ?
? ? ? ? ?
= 10
25
36
? = 14.4
Now, force on A = 2 × F cos 30° since it is equilateral ?.
? Force on A = 2 × 1.44 ×
2
3
= 24.94 N. ?
17. q
1
= q
2
= q
3
= q
4
= 2 × 10
–6
C
v = 5 cm = 5 × 10
–2
m
so force on c = 
CD CB CA
F F F ? ?
so Force along × Component = 0 45 cos F F
CA CD
? ? ?
= 
2 2
1
) 10 5 (
) 10 2 ( k
) 10 5 (
) 10 2 ( k
2 2
2 6
2 2
2 6
?
?
?
?
?
?
?
?
?
= 
?
?
?
?
?
?
?
?
?
?
?
? ? 4 4
2
10 2 50
1
10 25
1
kq
= 
?
?
?
?
?
?
?
?
?
?
? ? ?
?
?
2 2
1
1
10 24
10 4 10 9
4
12 9
= 1.44 (1.35) = 19.49 Force along % component = 19.49
So, Resultant R = 
2 2
Fy Fx ? = 19.49 2 = 27.56 
18. R = 0.53 A° = 0.53 × 10
–10
m
F = 
2
2 1
r
q Kq
= 
10 10
38 9
10 10 53 . 0 53 . 0
10 6 . 1 6 . 1 10 9
? ?
?
? ? ?
? ? ? ?
= 82.02 × 10
–9
N
19. Fe from previous problem No. 18 = 8.2 × 10
–8
N Ve = ?
Now, M
e
= 9.12 × 10
–31
kg r = 0.53 × 10
–10
m
Now, Fe = 
r
v M
2
e
? v
2
= 
e
m
r Fe ?
= 
31
10 8
10 1 . 9
10 53 . 0 10 2 . 8
?
? ?
?
? ? ?
= 0.4775 × 10
13
= 4.775 × 10
12
m
2
/s
2
? v = 2.18 × 10
6
m/s
0.05 m
60°
? ?
F 2 F 1
B
A
C
0.05 m
0.05 m
D
C
B
CD
F
A
CA
F
CB
F
Page 4


29.1
CHAPTER – 29
ELECTRIC FIELD AND POTENTIAL
EXERCISES
1. ?
0
= 
2
2
m Newton
Coulomb
= l
1
M
–1
L
–3
T
4
? F = 
2
2 1
r
q kq
2. q
1
= q
2
= q = 1.0 C distance between = 2 km = 1 × 10
3
m
so, force = 
2
2 1
r
q kq
F = 
2 3
9
) 10 2 (
1 1 ) 10 9 (
?
? ? ?
= 
6 2
9
10 2
10 9
?
?
= 2,25 × 10
3
N
The weight of body = mg = 40 × 10 N = 400 N
So, 
es arg ch between force
body of wt
= 
1
2
3
10 4
10 25 . 2
?
?
?
?
?
?
?
?
?
?
?
= (5.6)
–1
= 
6 . 5
1
So, force between charges = 5.6 weight of body.
3. q = 1 C, Let the distance be ?
F = 50 × 9.8 = 490
F = 
2
2
Kq
?
? 490 = 
2
2 9
1 10 9
?
? ?
or ?
2
= 
490
10 9
9
?
= 18.36 × 10
6 
? ? = 4.29 ×10
3
m ?
4. charges ‘q’ each, AB = 1 m
wt, of 50 kg person = 50 × g = 50 × 9.8 = 490 N
F
C
= 
2
2 1
r
q kq
?
2
2
r
kq
= 490 N
? q
2
= 
9
2
10 9
r 490
?
?
= 
9
10 9
1 1 490
?
? ?
? q = 
9
10 4 . 54
?
? = 23.323 × 10
–5
coulomb ˜ 2.3 × 10
–4
coulomb
5. Charge on each proton = a= 1.6 × 10
–19
coulomb
Distance between charges = 10 × 10
–15
metre = r
Force = 
2
2
r
kq
= 
30
38 9
10
10 6 . 1 6 . 1 10 9
?
?
? ? ? ?
= 9 × 2.56 × 10 = 230.4 Newton
6. q
1
= 2.0 × 10
–6
q
2
= 1.0 × 10
–6
r = 10 cm = 0.1 m
Let the charge be at a distance x from q
1
F
1
= 
2
1
q Kq
?
F
2
= 
2
2
) 1 . 0 (
kqq
? ?
= 
2
9 6
q 10 10 2 9 . 9
?
? ? ? ?
?
Now since the net force is zero on the charge q. ? f
1
= f
2
?
2
1
q kq
?
= 
2
2
) 1 . 0 (
kqq
? ?
? 2(0.1 – ?)
2
= ?
2
  ? 2 (0.1 – ?) = ?
? ? = 
2 1
2 1 . 0
?
= 0.0586 m = 5.86 cm ˜ 5.9 cm From larger charge
q 2
(0.1–x) m x m
q
q 1
10 cm
Electric Field and Potential
29.2
7. q
1
= 2 ×10
–6
c q
2
= – 1 × 10
–6
c r = 10 cm = 10 × 10
–2
m
Let the third charge be a so, F-
AC
= – F-
BC
?
2
1
1
r
kQq
= 
2
2
2
r
KQq ?
?
2
6
) 10 (
10 2
? ?
?
?
= 
2
6
10 1
?
?
?
? 2 ?
2
= (10 + ?)
2
? 2 ? = 10 + ? ? ?( 2 - 1) = 10 ? ? =
1 414 . 1
10
?
?
= 24.14 cm ?
So, distance = 24.14 + 10 = 34.14 cm from larger charge ?
8. Minimum charge of a body is the charge of an electron
Wo, q = 1.6 × 10
–19
c ? = 1 cm = 1 × 10
–2
cm 
So, F = 
2
2 1
r
q kq
= 
2 2
19 19 9
10 10
10 10 6 . 1 6 . 1 10 9
? ?
? ?
?
? ? ? ? ?
= 23.04 × 10
–38+9+2+2
= 23.04 × 10
–25
= 2.3 × 10
–24
?
9. No. of electrons of 100 g water = 
18
100 10 ?
= 55.5 Nos Total charge = 55.5
No. of electrons in 18 g of H
2
O = 6.023 × 10
23
× 10 = 6.023 × 10
24
No. of electrons in 100 g  of H
2
O = 
18
100 10 023 . 6
24
? ?
= 0.334 × 10
26
= 3.334 × 10
25
Total charge = 3.34 × 10
25
× 1.6 × 10
–19
= 5.34 × 10
6
c
10. Molecular weight of H
2
O = 2 × 1 × 16 = 16
No. of electrons present in one molecule of H
2
O = 10
18 gm of H
2
O has 6.023 × 10
23
molecule
18 gm of H
2
O has 6.023 × 10
23
× 10 electrons
100 gm of H
2
O has 100
18
10 023 . 6
24
?
?
electrons
So number of protons = 
18
10 023 . 6
26
?
protons (since atom is electrically neutral)
Charge of protons = 
18
10 023 . 6 10 6 . 1
26 19
? ? ?
?
coulomb = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Charge of electrons = = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Hence Electrical force = 
2 2
7 7
9
) 10 10 (
18
10 023 . 6 6 . 1
18
10 023 . 6 6 . 1
10 9
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
? ?
?
= 
25
10 023 . 6 6 . 1
18
023 . 6 8
? ? ?
?
= 2.56 × 10
25
Newton
11. Let two protons be at a distance be 13.8 femi
F = 
30 2
38 9
10 ) 8 . 14 (
10 6 . 1 10 9
?
?
?
? ? ?
= 1.2 N
12. F = 0.1 N
r = 1 cm = 10
–2
(As they rubbed with each other. So the charge on each sphere are equal)
So, F = 
2
2 1
r
q kq
? 0.1 = 
2 2
2
) 10 (
kq
?
? q
2
= 
9
4
10 9
10 1 . 0
?
?
?
? q
2
= 
14
10
9
1
?
? ? q = 
7
10
3
1
?
?
1.6 × 10
–19
c Carries by 1 electron 1 c carried by 
19
10 6 . 1
1
?
?
0.33 × 10
–7
c carries by 
7
19
10 33 . 0
10 6 . 1
1
?
?
? ?
?
= 0.208 × 10
12
= 2.08 × 10
11
+
+
+
–
–
–
–
+
+
A
10 × 10
–10
m
C
B
a
2 × 10
–6
c
–1 × 10
–6
c
Electric Field and Potential
29.3
13. F = 
2
2 1
r
q kq
= 
2 10
19 19 9
) 10 75 . 2 (
10 10 6 . 1 6 . 1 10 9
?
? ?
?
? ? ? ? ?
= 
20
29
10 56 . 7
10 04 . 23
?
?
?
?
= 3.04 × 10
–9
14. Given: mass of proton = 1.67 × 10
–27
kg = M
p
k = 9 × 10
9
Charge of proton = 1.6 × 10
–19
c = C
p
G = 6.67 × 10
–11
Let the separation be ‘r’ 
Fe = 
2
2
p
r
) C ( k
, fg= 
2
2
p
r
) M ( G
Now, Fe : Fg = 
2
p
2
2
2
p
) M ( G
r
r
) C ( K
? = 
2 27 11
2 19 9
) 10 67 . 1 ( 10 67 . 6
) 0 ` 1 6 . 1 ( 10 9
? ?
?
? ? ?
? ? ?
= 9 × 2.56 × 10
38
˜ 1,24 ×10
38
15. Expression of electrical force F = 
2
r
kr
e C
?
?
Since e
–kr
is a pure number. So, dimensional formulae of F = 
2
r of formulae ensional dim
C of formulae ensional dim
Or, [MLT
–2
][L
2
] = dimensional formulae of C = [ML
3
T
–2
]
Unit of C = unit of force × unit of r
2
= Newton × m
2
= Newton–m
2
  
Since –kr is a number hence dimensional formulae of 
k = 
r of formulae entional dim
1
= [L
–1
] Unit of k = m
–1
16. Three charges are held at three corners of a equilateral trangle.
Let the charges be A, B and C. It is of length 5 cm or 0.05 m
Force exerted by B on A = F
1
force exerted by C on A = F
2
So, force exerted on A = resultant F
1
= F
2
? F = 
2
2
r
kq
= 
4
12 9
10 5 5
10 2 2 2 10 9
?
?
? ?
? ? ? ? ?
= 10
25
36
? = 14.4
Now, force on A = 2 × F cos 30° since it is equilateral ?.
? Force on A = 2 × 1.44 ×
2
3
= 24.94 N. ?
17. q
1
= q
2
= q
3
= q
4
= 2 × 10
–6
C
v = 5 cm = 5 × 10
–2
m
so force on c = 
CD CB CA
F F F ? ?
so Force along × Component = 0 45 cos F F
CA CD
? ? ?
= 
2 2
1
) 10 5 (
) 10 2 ( k
) 10 5 (
) 10 2 ( k
2 2
2 6
2 2
2 6
?
?
?
?
?
?
?
?
?
= 
?
?
?
?
?
?
?
?
?
?
?
? ? 4 4
2
10 2 50
1
10 25
1
kq
= 
?
?
?
?
?
?
?
?
?
?
? ? ?
?
?
2 2
1
1
10 24
10 4 10 9
4
12 9
= 1.44 (1.35) = 19.49 Force along % component = 19.49
So, Resultant R = 
2 2
Fy Fx ? = 19.49 2 = 27.56 
18. R = 0.53 A° = 0.53 × 10
–10
m
F = 
2
2 1
r
q Kq
= 
10 10
38 9
10 10 53 . 0 53 . 0
10 6 . 1 6 . 1 10 9
? ?
?
? ? ?
? ? ? ?
= 82.02 × 10
–9
N
19. Fe from previous problem No. 18 = 8.2 × 10
–8
N Ve = ?
Now, M
e
= 9.12 × 10
–31
kg r = 0.53 × 10
–10
m
Now, Fe = 
r
v M
2
e
? v
2
= 
e
m
r Fe ?
= 
31
10 8
10 1 . 9
10 53 . 0 10 2 . 8
?
? ?
?
? ? ?
= 0.4775 × 10
13
= 4.775 × 10
12
m
2
/s
2
? v = 2.18 × 10
6
m/s
0.05 m
60°
? ?
F 2 F 1
B
A
C
0.05 m
0.05 m
D
C
B
CD
F
A
CA
F
CB
F
Electric Field and Potential
29.4
20. Electric force feeled by 1 c due to 1 × 10
–8
c.
F
1
= 
2 2
8
) 10 10 (
1 10 1 k
?
?
?
? ? ?
= k × 10
-6
N. electric force feeled by 1 c due to 8 × 10
–8
c.
F
2
= 
2 2
8
) 10 23 (
1 10 8 k
?
?
?
? ? ?
= 
9
10 10 8 k
2 8
? ? ? ?
?
= 
4
10 k 28
6 ?
?
= 2k × 10
–6
N.
Similarly F
3
= 
2 2
8
) 10 30 (
1 10 27 k
?
?
?
? ? ?
= 3k × 10
–6
N
So, F = F
1
+ F
2
+ F
3
+ ……+ F
10
= k × 10
–6
(1 + 2 + 3 +……+10) N
= k × 10
–6
× 
2
11 10 ?
= 55k × 10
–6
= 55 × 9 × 10
9
× 10
–6
N = 4.95 × 10
3
N 
21. Force exerted = 
2
2
1
r
kq
= 
2
16 9
1
10 2 2 10 9
?
? ? ? ?
= 3.6 × 10
–6
is the force exerted on the string
22. q
1
= q
2
= 2 × 10
–7
c m = 100 g
l = 50 cm = 5 × 10
–2
m d = 5 × 10
–2
m
(a) Now Electric force 
F = 
2
2
r
q
K = 
4
14 9
10 25
10 4 10 9
?
?
?
? ? ?
N = 14.4 × 10
–2
N = 0.144 N
(b) The components of Resultant force along it is zero, 
because mg balances T cos ? and so also.
F = mg = T sin ??
(c) Tension on the string
T sin ? = F T cos ? = mg
Tan ? = 
mg
F
= 
8 . 9 10 100
144 . 0
3
? ?
?
= 0.14693
But T cos ? = 10
2
× 10
–3
× 10 = 1 N
? T = 
? cos
1
= sec ? ? ?
? T = 
? sin
F
, ?
Sin ? = 0.145369 ; Cos ? = 0.989378; ?
23. q = 2.0 × 10
–8 
c n= ? T = ? Sin ? = 
20
1
Force between the charges 
F = 
2
2 1
r
q Kq
= 
2 2
8 8 9
) 10 3 (
10 2 10 2 10 9
?
? ?
?
? ? ? ? ?
= 4 × 10
–3
N
mg sin ? = F ? m = 
? sin g
F
= 
) 20 / 1 ( 10
10 4
3
?
?
?
= 8 × 10
–3
= 8 gm
Cos ??= ? ?
2
Sin 1 = 
400
1
1 ? = 
400
1 400 ?
= 0.99 ˜ 1
So, T = mg cos ?
Or T = 8 × 10
–3
10 × 0.99 = 8 × 10
–2
M ?
r = 1 m
q 1
q 1
90°
? ?
T
F
T Cos ? ?
??
? ?
90°
F
T Cos ? ?
T Sin ? ?
T Sin ? ?
20 cm
0
1 cm
20 T
mg
5 cm
1 cm 1 cm
T
20
Page 5


29.1
CHAPTER – 29
ELECTRIC FIELD AND POTENTIAL
EXERCISES
1. ?
0
= 
2
2
m Newton
Coulomb
= l
1
M
–1
L
–3
T
4
? F = 
2
2 1
r
q kq
2. q
1
= q
2
= q = 1.0 C distance between = 2 km = 1 × 10
3
m
so, force = 
2
2 1
r
q kq
F = 
2 3
9
) 10 2 (
1 1 ) 10 9 (
?
? ? ?
= 
6 2
9
10 2
10 9
?
?
= 2,25 × 10
3
N
The weight of body = mg = 40 × 10 N = 400 N
So, 
es arg ch between force
body of wt
= 
1
2
3
10 4
10 25 . 2
?
?
?
?
?
?
?
?
?
?
?
= (5.6)
–1
= 
6 . 5
1
So, force between charges = 5.6 weight of body.
3. q = 1 C, Let the distance be ?
F = 50 × 9.8 = 490
F = 
2
2
Kq
?
? 490 = 
2
2 9
1 10 9
?
? ?
or ?
2
= 
490
10 9
9
?
= 18.36 × 10
6 
? ? = 4.29 ×10
3
m ?
4. charges ‘q’ each, AB = 1 m
wt, of 50 kg person = 50 × g = 50 × 9.8 = 490 N
F
C
= 
2
2 1
r
q kq
?
2
2
r
kq
= 490 N
? q
2
= 
9
2
10 9
r 490
?
?
= 
9
10 9
1 1 490
?
? ?
? q = 
9
10 4 . 54
?
? = 23.323 × 10
–5
coulomb ˜ 2.3 × 10
–4
coulomb
5. Charge on each proton = a= 1.6 × 10
–19
coulomb
Distance between charges = 10 × 10
–15
metre = r
Force = 
2
2
r
kq
= 
30
38 9
10
10 6 . 1 6 . 1 10 9
?
?
? ? ? ?
= 9 × 2.56 × 10 = 230.4 Newton
6. q
1
= 2.0 × 10
–6
q
2
= 1.0 × 10
–6
r = 10 cm = 0.1 m
Let the charge be at a distance x from q
1
F
1
= 
2
1
q Kq
?
F
2
= 
2
2
) 1 . 0 (
kqq
? ?
= 
2
9 6
q 10 10 2 9 . 9
?
? ? ? ?
?
Now since the net force is zero on the charge q. ? f
1
= f
2
?
2
1
q kq
?
= 
2
2
) 1 . 0 (
kqq
? ?
? 2(0.1 – ?)
2
= ?
2
  ? 2 (0.1 – ?) = ?
? ? = 
2 1
2 1 . 0
?
= 0.0586 m = 5.86 cm ˜ 5.9 cm From larger charge
q 2
(0.1–x) m x m
q
q 1
10 cm
Electric Field and Potential
29.2
7. q
1
= 2 ×10
–6
c q
2
= – 1 × 10
–6
c r = 10 cm = 10 × 10
–2
m
Let the third charge be a so, F-
AC
= – F-
BC
?
2
1
1
r
kQq
= 
2
2
2
r
KQq ?
?
2
6
) 10 (
10 2
? ?
?
?
= 
2
6
10 1
?
?
?
? 2 ?
2
= (10 + ?)
2
? 2 ? = 10 + ? ? ?( 2 - 1) = 10 ? ? =
1 414 . 1
10
?
?
= 24.14 cm ?
So, distance = 24.14 + 10 = 34.14 cm from larger charge ?
8. Minimum charge of a body is the charge of an electron
Wo, q = 1.6 × 10
–19
c ? = 1 cm = 1 × 10
–2
cm 
So, F = 
2
2 1
r
q kq
= 
2 2
19 19 9
10 10
10 10 6 . 1 6 . 1 10 9
? ?
? ?
?
? ? ? ? ?
= 23.04 × 10
–38+9+2+2
= 23.04 × 10
–25
= 2.3 × 10
–24
?
9. No. of electrons of 100 g water = 
18
100 10 ?
= 55.5 Nos Total charge = 55.5
No. of electrons in 18 g of H
2
O = 6.023 × 10
23
× 10 = 6.023 × 10
24
No. of electrons in 100 g  of H
2
O = 
18
100 10 023 . 6
24
? ?
= 0.334 × 10
26
= 3.334 × 10
25
Total charge = 3.34 × 10
25
× 1.6 × 10
–19
= 5.34 × 10
6
c
10. Molecular weight of H
2
O = 2 × 1 × 16 = 16
No. of electrons present in one molecule of H
2
O = 10
18 gm of H
2
O has 6.023 × 10
23
molecule
18 gm of H
2
O has 6.023 × 10
23
× 10 electrons
100 gm of H
2
O has 100
18
10 023 . 6
24
?
?
electrons
So number of protons = 
18
10 023 . 6
26
?
protons (since atom is electrically neutral)
Charge of protons = 
18
10 023 . 6 10 6 . 1
26 19
? ? ?
?
coulomb = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Charge of electrons = = 
18
10 023 . 6 6 . 1
7
? ?
coulomb
Hence Electrical force = 
2 2
7 7
9
) 10 10 (
18
10 023 . 6 6 . 1
18
10 023 . 6 6 . 1
10 9
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
? ?
?
= 
25
10 023 . 6 6 . 1
18
023 . 6 8
? ? ?
?
= 2.56 × 10
25
Newton
11. Let two protons be at a distance be 13.8 femi
F = 
30 2
38 9
10 ) 8 . 14 (
10 6 . 1 10 9
?
?
?
? ? ?
= 1.2 N
12. F = 0.1 N
r = 1 cm = 10
–2
(As they rubbed with each other. So the charge on each sphere are equal)
So, F = 
2
2 1
r
q kq
? 0.1 = 
2 2
2
) 10 (
kq
?
? q
2
= 
9
4
10 9
10 1 . 0
?
?
?
? q
2
= 
14
10
9
1
?
? ? q = 
7
10
3
1
?
?
1.6 × 10
–19
c Carries by 1 electron 1 c carried by 
19
10 6 . 1
1
?
?
0.33 × 10
–7
c carries by 
7
19
10 33 . 0
10 6 . 1
1
?
?
? ?
?
= 0.208 × 10
12
= 2.08 × 10
11
+
+
+
–
–
–
–
+
+
A
10 × 10
–10
m
C
B
a
2 × 10
–6
c
–1 × 10
–6
c
Electric Field and Potential
29.3
13. F = 
2
2 1
r
q kq
= 
2 10
19 19 9
) 10 75 . 2 (
10 10 6 . 1 6 . 1 10 9
?
? ?
?
? ? ? ? ?
= 
20
29
10 56 . 7
10 04 . 23
?
?
?
?
= 3.04 × 10
–9
14. Given: mass of proton = 1.67 × 10
–27
kg = M
p
k = 9 × 10
9
Charge of proton = 1.6 × 10
–19
c = C
p
G = 6.67 × 10
–11
Let the separation be ‘r’ 
Fe = 
2
2
p
r
) C ( k
, fg= 
2
2
p
r
) M ( G
Now, Fe : Fg = 
2
p
2
2
2
p
) M ( G
r
r
) C ( K
? = 
2 27 11
2 19 9
) 10 67 . 1 ( 10 67 . 6
) 0 ` 1 6 . 1 ( 10 9
? ?
?
? ? ?
? ? ?
= 9 × 2.56 × 10
38
˜ 1,24 ×10
38
15. Expression of electrical force F = 
2
r
kr
e C
?
?
Since e
–kr
is a pure number. So, dimensional formulae of F = 
2
r of formulae ensional dim
C of formulae ensional dim
Or, [MLT
–2
][L
2
] = dimensional formulae of C = [ML
3
T
–2
]
Unit of C = unit of force × unit of r
2
= Newton × m
2
= Newton–m
2
  
Since –kr is a number hence dimensional formulae of 
k = 
r of formulae entional dim
1
= [L
–1
] Unit of k = m
–1
16. Three charges are held at three corners of a equilateral trangle.
Let the charges be A, B and C. It is of length 5 cm or 0.05 m
Force exerted by B on A = F
1
force exerted by C on A = F
2
So, force exerted on A = resultant F
1
= F
2
? F = 
2
2
r
kq
= 
4
12 9
10 5 5
10 2 2 2 10 9
?
?
? ?
? ? ? ? ?
= 10
25
36
? = 14.4
Now, force on A = 2 × F cos 30° since it is equilateral ?.
? Force on A = 2 × 1.44 ×
2
3
= 24.94 N. ?
17. q
1
= q
2
= q
3
= q
4
= 2 × 10
–6
C
v = 5 cm = 5 × 10
–2
m
so force on c = 
CD CB CA
F F F ? ?
so Force along × Component = 0 45 cos F F
CA CD
? ? ?
= 
2 2
1
) 10 5 (
) 10 2 ( k
) 10 5 (
) 10 2 ( k
2 2
2 6
2 2
2 6
?
?
?
?
?
?
?
?
?
= 
?
?
?
?
?
?
?
?
?
?
?
? ? 4 4
2
10 2 50
1
10 25
1
kq
= 
?
?
?
?
?
?
?
?
?
?
? ? ?
?
?
2 2
1
1
10 24
10 4 10 9
4
12 9
= 1.44 (1.35) = 19.49 Force along % component = 19.49
So, Resultant R = 
2 2
Fy Fx ? = 19.49 2 = 27.56 
18. R = 0.53 A° = 0.53 × 10
–10
m
F = 
2
2 1
r
q Kq
= 
10 10
38 9
10 10 53 . 0 53 . 0
10 6 . 1 6 . 1 10 9
? ?
?
? ? ?
? ? ? ?
= 82.02 × 10
–9
N
19. Fe from previous problem No. 18 = 8.2 × 10
–8
N Ve = ?
Now, M
e
= 9.12 × 10
–31
kg r = 0.53 × 10
–10
m
Now, Fe = 
r
v M
2
e
? v
2
= 
e
m
r Fe ?
= 
31
10 8
10 1 . 9
10 53 . 0 10 2 . 8
?
? ?
?
? ? ?
= 0.4775 × 10
13
= 4.775 × 10
12
m
2
/s
2
? v = 2.18 × 10
6
m/s
0.05 m
60°
? ?
F 2 F 1
B
A
C
0.05 m
0.05 m
D
C
B
CD
F
A
CA
F
CB
F
Electric Field and Potential
29.4
20. Electric force feeled by 1 c due to 1 × 10
–8
c.
F
1
= 
2 2
8
) 10 10 (
1 10 1 k
?
?
?
? ? ?
= k × 10
-6
N. electric force feeled by 1 c due to 8 × 10
–8
c.
F
2
= 
2 2
8
) 10 23 (
1 10 8 k
?
?
?
? ? ?
= 
9
10 10 8 k
2 8
? ? ? ?
?
= 
4
10 k 28
6 ?
?
= 2k × 10
–6
N.
Similarly F
3
= 
2 2
8
) 10 30 (
1 10 27 k
?
?
?
? ? ?
= 3k × 10
–6
N
So, F = F
1
+ F
2
+ F
3
+ ……+ F
10
= k × 10
–6
(1 + 2 + 3 +……+10) N
= k × 10
–6
× 
2
11 10 ?
= 55k × 10
–6
= 55 × 9 × 10
9
× 10
–6
N = 4.95 × 10
3
N 
21. Force exerted = 
2
2
1
r
kq
= 
2
16 9
1
10 2 2 10 9
?
? ? ? ?
= 3.6 × 10
–6
is the force exerted on the string
22. q
1
= q
2
= 2 × 10
–7
c m = 100 g
l = 50 cm = 5 × 10
–2
m d = 5 × 10
–2
m
(a) Now Electric force 
F = 
2
2
r
q
K = 
4
14 9
10 25
10 4 10 9
?
?
?
? ? ?
N = 14.4 × 10
–2
N = 0.144 N
(b) The components of Resultant force along it is zero, 
because mg balances T cos ? and so also.
F = mg = T sin ??
(c) Tension on the string
T sin ? = F T cos ? = mg
Tan ? = 
mg
F
= 
8 . 9 10 100
144 . 0
3
? ?
?
= 0.14693
But T cos ? = 10
2
× 10
–3
× 10 = 1 N
? T = 
? cos
1
= sec ? ? ?
? T = 
? sin
F
, ?
Sin ? = 0.145369 ; Cos ? = 0.989378; ?
23. q = 2.0 × 10
–8 
c n= ? T = ? Sin ? = 
20
1
Force between the charges 
F = 
2
2 1
r
q Kq
= 
2 2
8 8 9
) 10 3 (
10 2 10 2 10 9
?
? ?
?
? ? ? ? ?
= 4 × 10
–3
N
mg sin ? = F ? m = 
? sin g
F
= 
) 20 / 1 ( 10
10 4
3
?
?
?
= 8 × 10
–3
= 8 gm
Cos ??= ? ?
2
Sin 1 = 
400
1
1 ? = 
400
1 400 ?
= 0.99 ˜ 1
So, T = mg cos ?
Or T = 8 × 10
–3
10 × 0.99 = 8 × 10
–2
M ?
r = 1 m
q 1
q 1
90°
? ?
T
F
T Cos ? ?
??
? ?
90°
F
T Cos ? ?
T Sin ? ?
T Sin ? ?
20 cm
0
1 cm
20 T
mg
5 cm
1 cm 1 cm
T
20
Electric Field and Potential
29.5
24. T Cos ? = mg …(1)
T Sin ? = Fe …(2)
Solving, (2)/(1) we get, tan ? = 
mg
Fe
= 
mg
1
r
kq
2
?
?
1596
2
= 
8 . 9 02 . 0 ) 04 . 0 (
q 10 9
2
2 9
? ?
? ?
? q
2
= 
1596 10 9
2 8 . 9 02 . 0 ) 04 . 0 (
9
2
? ?
? ? ?
= 
95 . 39 10 9
10 27 . 6
9
4
? ?
?
?
= 17 × 10
–16
c
2
? q = 
16
10 17
?
? = 4.123 × 10
–8
c ?
25. Electric force = 
2
2
) Q sin Q sin (
kq
? ? ?
= 
2 2
2
sin 4
kq
?
So, T Cos ? = ms (For equilibrium) T sin ? = Ef
Or tan ? = 
mg
Ef
? mg = Ef cot ? = ?
?
cot
sin 4
kq
2 2
2
?
= 
0
2 2
2
E 16 sin
cot q
? ?
?
?
or m = 
g Sin E 16
cot q
2 2
0
2
? ?
?
?
unit.
26. Mass of the bob = 100 g = 0.1 kg
So Tension in the string = 0.1 × 9.8 = 0.98 N.
For the Tension to be 0, the charge below should repel the first bob.
? F = 
2
2 1
r
q kq
T – mg + F = 0 ? T = mg – f T = mg
? 0.98 = 
2
2
4 9
) 01 . 0 (
q 10 2 10 9 ? ? ? ?
?
? q
2
= 
5
2
10 2 9
10 1 98 . 0
? ?
? ?
?
= 0.054 × 10
–9
N
27. Let the charge on C = q
So, net force on c is equal to zero
So 
BA AC
F F ? = 0, But F
AC
= F
BC
?
2
x
kqQ
= 
2
) x d (
qQ 2 k
?
? 2x
2
= (d – x)
2
? 2 x = d – x 
? x = 
1 2
d
?
= 
) 1 2 (
) 1 2 (
) 1 2 (
d
?
?
?
?
= ) 1 2 ( d ?
For the charge on rest, F
AC
+ F
AB
= 0
2 2
2
d
) q 2 ( kq
d
kqQ
) 414 . 2 ( ? = 0 ? ] q 2 Q ) 414 . 2 [(
d
kq
2
2
? = 0 
? 2q = –(2.414)
2
Q 
? Q = q
) 1 2 (
2
2
? ?
= q
2 2 3
2
?
?
?
?
?
?
?
?
?
? = –(0.343) q = –(6 – 4 2 )
28. K = 100 N/m l = 10 cm = 10
–1
m q = 2.0 × 10
–8
c Find l = ?
Force between them F = 
2
2 1
r
q kq
= 
2
8 8 9
10
10 2 10 2 10 9
?
? ?
? ? ? ?
= 36 × 10
–5
N
So, F = – kx or x = 
K
F
?
= 
100
10 36
5 ?
?
= 36 × 10
–7
cm = 3.6 × 10
–6
m
4 cm
1596
20 g
B
A
? ?
20 g
40 cm
? ? v
2
q
E F
l
? ?
mg l sin ? ?
l
q
FBD for a mass 
(m)
T
E F
T cos ? ?
mg
a
T Sin ? ?
2 × 10
–4
C
10 cm mg
q
C
B
A
d
x d–x
2q
q 2
q 1
K
Read More
102 videos|411 docs|121 tests

Top Courses for NEET

FAQs on HC Verma Solutions: Chapter 29 - Electric Field & Potential - Physics Class 11 - NEET

1. What is the electric field and potential?
Ans. The electric field is a vector quantity that represents the force experienced by a positive test charge placed in the field. It is defined as the force per unit positive charge. Electric potential, on the other hand, is the amount of work done to bring a unit positive charge from infinity to a given point in an electric field. It is a scalar quantity.
2. How is the electric field calculated?
Ans. The electric field at a point is calculated by dividing the force experienced by a positive test charge placed at that point by the magnitude of the test charge. Mathematically, it can be represented as E = F/q, where E is the electric field, F is the force, and q is the test charge.
3. What is the relationship between electric field and potential?
Ans. The relationship between electric field (E) and electric potential (V) is given by the equation E = -∇V, where ∇ denotes the gradient. This means that the electric field is the negative gradient of the electric potential. In simpler terms, the electric field points in the direction of decreasing potential.
4. How does the electric field affect the motion of charged particles?
Ans. Charged particles experience a force when placed in an electric field. The force exerted on a charged particle is directly proportional to the charge of the particle and the strength of the electric field. This force can cause the charged particles to accelerate or change their direction of motion, depending on the direction of the electric field.
5. How is the electric potential measured?
Ans. The electric potential at a point can be measured using a voltmeter. A voltmeter is connected between two points in an electric field, and it measures the potential difference between those two points. The potential difference is a measure of the electric potential, as it represents the work done per unit charge to bring a positive charge from one point to another.
102 videos|411 docs|121 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Objective type Questions

,

video lectures

,

past year papers

,

Sample Paper

,

MCQs

,

Exam

,

Free

,

mock tests for examination

,

HC Verma Solutions: Chapter 29 - Electric Field & Potential | Physics Class 11 - NEET

,

HC Verma Solutions: Chapter 29 - Electric Field & Potential | Physics Class 11 - NEET

,

practice quizzes

,

Semester Notes

,

Extra Questions

,

Viva Questions

,

pdf

,

Important questions

,

Summary

,

HC Verma Solutions: Chapter 29 - Electric Field & Potential | Physics Class 11 - NEET

,

shortcuts and tricks

,

study material

,

Previous Year Questions with Solutions

,

ppt

;