Chapter 47 : The Special Theory of Relativity - HC Verma Solution, Physics Class 11 Notes | EduRev

Physics Class 11

JEE : Chapter 47 : The Special Theory of Relativity - HC Verma Solution, Physics Class 11 Notes | EduRev

 Page 1


47.1
THE SPECIAL THEORY OF RELATIVITY
CHAPTER - 47
1. S = 1000 km = 10
6
m
The process requires minimum possible time if the velocity is maximum.
We know that maximum velocity can be that of light i.e. = 3 ? 10
8
m/s.
So, time = 
6
8
Distance 10 1
Speed 300 3 10
? ?
?
s.
2. l = 50 cm, b = 25 cm, h = 10 cm, v = 0.6 c
a) The observer in the train notices the same value of l, b, h because relativity are in due to difference 
in frames.
b) In 2 different frames, the component of length parallel to the velocity undergoes contraction but the 
perpendicular components remain the same. So length which is parallel to the x-axis changes and 
breadth and height remain the same.
e ? = 
2 2 2
2 2
V (0.6) C
e 1 50 1
C C
? ? ?
= 50 1 0.36 ? = 50 ? 0.8 = 40 cm.
The lengths observed are 40 cm ? 25 cm ? 10 cm.
3. L = 1 m
a) v  3 ? 10
5
m/s
L ? = 
10
6
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9999995 m
b) v = 3 x 10
6
m/s
L ? = 
12
4
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.99995 m.
c) v = 3 ? 10
7
m/s
L ? = 
14
2
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9949 = 0.995 m.
4. v = 0.6 cm/sec ; t = 1 sec
a) length observed by the observer = vt ? 0.6 ? 3 ? 10
6
? 1.8 ? 10
8
m
b) l = 
2 2
0
1 v / c ? ? ? 1.8 ? 10
8
= 
2 2
0
2
(0.6) C
1
C
? ?
l
0
= 
8
1.8 10
0.8
?
= 2.25 ? 10
8
m/s.
5. The rectangular field appears to be a square when the length becomes equal to the breadth i.e. 50 m.
i.e. L ? = 50 ; L = 100 ; v = ?
C = 3 ? 10
8
m/s
We know, L ? = 
2 2
L 1 v / c ?
? 50 = 
2 2
100 1 v / c ? ? v = 3 / 2C = 0.866 C.
6. L
0
= 1000 km = 10
6
m
v = 360 km/h = (360 ? 5) / 18 = 100 m/sec.
a) h ? = 
2
4
2 2 6 6
0
8 6
100 10
h 1 v / c 10 1 10 1
3 10 9 10
? ?
? ? ? ? ?
? ?
? ? ? ?
= 10
9
.
Solving change in length = 56 nm.
b) ?t = ?L/v = 56 nm / 100 m = 0.56 ns. ?
Page 2


47.1
THE SPECIAL THEORY OF RELATIVITY
CHAPTER - 47
1. S = 1000 km = 10
6
m
The process requires minimum possible time if the velocity is maximum.
We know that maximum velocity can be that of light i.e. = 3 ? 10
8
m/s.
So, time = 
6
8
Distance 10 1
Speed 300 3 10
? ?
?
s.
2. l = 50 cm, b = 25 cm, h = 10 cm, v = 0.6 c
a) The observer in the train notices the same value of l, b, h because relativity are in due to difference 
in frames.
b) In 2 different frames, the component of length parallel to the velocity undergoes contraction but the 
perpendicular components remain the same. So length which is parallel to the x-axis changes and 
breadth and height remain the same.
e ? = 
2 2 2
2 2
V (0.6) C
e 1 50 1
C C
? ? ?
= 50 1 0.36 ? = 50 ? 0.8 = 40 cm.
The lengths observed are 40 cm ? 25 cm ? 10 cm.
3. L = 1 m
a) v  3 ? 10
5
m/s
L ? = 
10
6
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9999995 m
b) v = 3 x 10
6
m/s
L ? = 
12
4
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.99995 m.
c) v = 3 ? 10
7
m/s
L ? = 
14
2
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9949 = 0.995 m.
4. v = 0.6 cm/sec ; t = 1 sec
a) length observed by the observer = vt ? 0.6 ? 3 ? 10
6
? 1.8 ? 10
8
m
b) l = 
2 2
0
1 v / c ? ? ? 1.8 ? 10
8
= 
2 2
0
2
(0.6) C
1
C
? ?
l
0
= 
8
1.8 10
0.8
?
= 2.25 ? 10
8
m/s.
5. The rectangular field appears to be a square when the length becomes equal to the breadth i.e. 50 m.
i.e. L ? = 50 ; L = 100 ; v = ?
C = 3 ? 10
8
m/s
We know, L ? = 
2 2
L 1 v / c ?
? 50 = 
2 2
100 1 v / c ? ? v = 3 / 2C = 0.866 C.
6. L
0
= 1000 km = 10
6
m
v = 360 km/h = (360 ? 5) / 18 = 100 m/sec.
a) h ? = 
2
4
2 2 6 6
0
8 6
100 10
h 1 v / c 10 1 10 1
3 10 9 10
? ?
? ? ? ? ?
? ?
? ? ? ?
= 10
9
.
Solving change in length = 56 nm.
b) ?t = ?L/v = 56 nm / 100 m = 0.56 ns. ?
The Special Theory of Relativity
2
7. v = 180 km/hr = 50 m/s
t = 10 hours
let the rest dist. be L.
L ? = 
2 2
L 1 v / c ? ? L ? = 10 ? 180 = 1800 k.m.
1800 = 
2
5 2
180
L 1
(3 10 )
?
?
or, 1800 ? 1800 = L(1 – 36 ? 10
–14
)
or, L = 
6
14
3.24 10
1 36 10
?
?
? ?
= 1800 + 25 ? 10
–12
or 25 nm more than 1800 km.
b) Time taken in road frame by Car to cover the dist = 
6 9
1.8 10 25 10
50
?
? ? ?
= 0.36 ? 10
5
+ 5 ? 10
–8
= 10 hours + 0.5 ns.
8. a) u = 5c/13
?t = 
2 2 2
2
t 1y y 13 13
y
12 12
1 v / c 25c
1
169c
?
? ? ?
?
?
.
The time interval between the consecutive birthday celebration is 13/12 y.
b) The fried on the earth also calculates the same speed. ?
9. The birth timings recorded by the station clocks is proper time interval because it is the ground frame. 
That of the train is improper as it records the time at two different places. The proper time interval ?T is 
less than improper.
i.e. ?T ? = v ?T
Hence for – (a) up train ? Delhi baby is elder (b) down train ? Howrah baby is elder. ?
10. The clocks of a moving frame are out of synchronization. The clock at the rear end leads the one at 
from by L
0
V/C
2
where L
0
is the rest separation between the clocks, and v is speed of the moving frame.
Thus, the baby adjacent to the guard cell is elder.
11. v = 0.9999 C ; ?t = One day in earth ; ?t ? = One day in heaven
v = 
2 2 2 2
2
1 1 1
0.014141782
1 v / c (0.9999) C
1
C
? ?
?
?
= 70.712
?t ? = v ?t ;
Hence, ?t ? = 70.7 days in heaven. ?
12. t = 100 years ; V = 60/100 K ; C = 0.6 C.
?t = 
2 2 2 2
2
t 100y 100y
0.8
1 V / C (0.6) C
1
C
? ?
?
?
= 125 y. ?
13. We know
f ? = 
2 2
f 1 V / C ?
f ? = apparent frequency ; 
f = frequency in rest frame
v = 0.8 C
f ? = 
2
2
0.64C
1 0.36
C
? ? = 0.6 s
–1
A B 
Page 3


47.1
THE SPECIAL THEORY OF RELATIVITY
CHAPTER - 47
1. S = 1000 km = 10
6
m
The process requires minimum possible time if the velocity is maximum.
We know that maximum velocity can be that of light i.e. = 3 ? 10
8
m/s.
So, time = 
6
8
Distance 10 1
Speed 300 3 10
? ?
?
s.
2. l = 50 cm, b = 25 cm, h = 10 cm, v = 0.6 c
a) The observer in the train notices the same value of l, b, h because relativity are in due to difference 
in frames.
b) In 2 different frames, the component of length parallel to the velocity undergoes contraction but the 
perpendicular components remain the same. So length which is parallel to the x-axis changes and 
breadth and height remain the same.
e ? = 
2 2 2
2 2
V (0.6) C
e 1 50 1
C C
? ? ?
= 50 1 0.36 ? = 50 ? 0.8 = 40 cm.
The lengths observed are 40 cm ? 25 cm ? 10 cm.
3. L = 1 m
a) v  3 ? 10
5
m/s
L ? = 
10
6
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9999995 m
b) v = 3 x 10
6
m/s
L ? = 
12
4
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.99995 m.
c) v = 3 ? 10
7
m/s
L ? = 
14
2
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9949 = 0.995 m.
4. v = 0.6 cm/sec ; t = 1 sec
a) length observed by the observer = vt ? 0.6 ? 3 ? 10
6
? 1.8 ? 10
8
m
b) l = 
2 2
0
1 v / c ? ? ? 1.8 ? 10
8
= 
2 2
0
2
(0.6) C
1
C
? ?
l
0
= 
8
1.8 10
0.8
?
= 2.25 ? 10
8
m/s.
5. The rectangular field appears to be a square when the length becomes equal to the breadth i.e. 50 m.
i.e. L ? = 50 ; L = 100 ; v = ?
C = 3 ? 10
8
m/s
We know, L ? = 
2 2
L 1 v / c ?
? 50 = 
2 2
100 1 v / c ? ? v = 3 / 2C = 0.866 C.
6. L
0
= 1000 km = 10
6
m
v = 360 km/h = (360 ? 5) / 18 = 100 m/sec.
a) h ? = 
2
4
2 2 6 6
0
8 6
100 10
h 1 v / c 10 1 10 1
3 10 9 10
? ?
? ? ? ? ?
? ?
? ? ? ?
= 10
9
.
Solving change in length = 56 nm.
b) ?t = ?L/v = 56 nm / 100 m = 0.56 ns. ?
The Special Theory of Relativity
2
7. v = 180 km/hr = 50 m/s
t = 10 hours
let the rest dist. be L.
L ? = 
2 2
L 1 v / c ? ? L ? = 10 ? 180 = 1800 k.m.
1800 = 
2
5 2
180
L 1
(3 10 )
?
?
or, 1800 ? 1800 = L(1 – 36 ? 10
–14
)
or, L = 
6
14
3.24 10
1 36 10
?
?
? ?
= 1800 + 25 ? 10
–12
or 25 nm more than 1800 km.
b) Time taken in road frame by Car to cover the dist = 
6 9
1.8 10 25 10
50
?
? ? ?
= 0.36 ? 10
5
+ 5 ? 10
–8
= 10 hours + 0.5 ns.
8. a) u = 5c/13
?t = 
2 2 2
2
t 1y y 13 13
y
12 12
1 v / c 25c
1
169c
?
? ? ?
?
?
.
The time interval between the consecutive birthday celebration is 13/12 y.
b) The fried on the earth also calculates the same speed. ?
9. The birth timings recorded by the station clocks is proper time interval because it is the ground frame. 
That of the train is improper as it records the time at two different places. The proper time interval ?T is 
less than improper.
i.e. ?T ? = v ?T
Hence for – (a) up train ? Delhi baby is elder (b) down train ? Howrah baby is elder. ?
10. The clocks of a moving frame are out of synchronization. The clock at the rear end leads the one at 
from by L
0
V/C
2
where L
0
is the rest separation between the clocks, and v is speed of the moving frame.
Thus, the baby adjacent to the guard cell is elder.
11. v = 0.9999 C ; ?t = One day in earth ; ?t ? = One day in heaven
v = 
2 2 2 2
2
1 1 1
0.014141782
1 v / c (0.9999) C
1
C
? ?
?
?
= 70.712
?t ? = v ?t ;
Hence, ?t ? = 70.7 days in heaven. ?
12. t = 100 years ; V = 60/100 K ; C = 0.6 C.
?t = 
2 2 2 2
2
t 100y 100y
0.8
1 V / C (0.6) C
1
C
? ?
?
?
= 125 y. ?
13. We know
f ? = 
2 2
f 1 V / C ?
f ? = apparent frequency ; 
f = frequency in rest frame
v = 0.8 C
f ? = 
2
2
0.64C
1 0.36
C
? ? = 0.6 s
–1
A B 
The Special Theory of Relativity
3
14. V = 100 km/h, ?t = Proper time interval = 10 hours
?t ? = 
2 2 2
8
t 10 3600
1 V / C
1000
1
36 3 10
? ?
?
?
? ?
?
? ?
? ? ? ?
?t ? – ?t = 10 ? 3600 
2
8
1
1
1000
1
36 3 10
? ?
?
? ?
? ?
? ?
?
? ?
? ?
? ? ? ? ? ?
By solving we get, ?t ? – ?t = 0.154 ns.
? Time will lag by 0.154 ns. ?
15. Let the volume (initial) be V.
V ? = V/2
So, V/2 = 
2 2
v 1 V / C ?
? C/2 = 
2 2
C V ? ? C
2
/4 = C
2
– V
2
? V
2
= 
2
2 2
C 3
C C
4 4
? ? ? V = 
3
C
2
.
16. d = 1 cm, v = 0.995 C
a) time in Laboratory frame = 
2
d 1 10
v 0.995C
?
?
?
= 
2
8
1 10
0.995 3 10
?
?
? ?
= 33.5 ? 10
–12
= 33.5 PS
b) In the frame of the particle
t ? = 
12
2 2 2
t 33.5 10
1 V / C 1 (0.995)
?
?
?
? ?
= 335.41 PS.
17. x = 1 cm = 1 ? 10
–2
m ; K = 500 N/m, m = 200 g
Energy stored = ½ Kx
2
= ½ ? 500 ? 10
–4
= 0.025 J
Increase in mass = 
2 16
0.025 0.025
C 9 10
?
?
Fractional Change of max = 
16 1
0.025 1
9 10 2 10
?
?
? ?
= 0.01388 ? 10
–16
= 1.4 ? 10
–8
.
18. Q = MS ?? ? 1 ? 4200 (100 – 0) = 420000 J.
E = ( ?m)C
2
? ?m = 
2 2 8 2
E Q 420000
C C (3 10 )
? ?
?
= 4.66 ? 10
–12
= 4.7 ? 10
–12
kg.
19. Energy possessed by a monoatomic gas = 3/2 nRdt.
Now dT = 10, n = 1 mole, R = 8.3 J/mol-K.
E = 3/2 ? t ? 8.3 ? 10 
Loss in mass = 
2 15
1.5 8.3 10 124.5
C 9 10
? ?
?
?
= 1383 ? 10
–16
= 1.38 ? 10
–15
Kg.
20. Let initial mass be m
½ mv
2
= E
? E = 
2
1 12 5 m 50
m
2 18 9
? ? ? ?
?
? ?
? ?
?m = E/C
2
Page 4


47.1
THE SPECIAL THEORY OF RELATIVITY
CHAPTER - 47
1. S = 1000 km = 10
6
m
The process requires minimum possible time if the velocity is maximum.
We know that maximum velocity can be that of light i.e. = 3 ? 10
8
m/s.
So, time = 
6
8
Distance 10 1
Speed 300 3 10
? ?
?
s.
2. l = 50 cm, b = 25 cm, h = 10 cm, v = 0.6 c
a) The observer in the train notices the same value of l, b, h because relativity are in due to difference 
in frames.
b) In 2 different frames, the component of length parallel to the velocity undergoes contraction but the 
perpendicular components remain the same. So length which is parallel to the x-axis changes and 
breadth and height remain the same.
e ? = 
2 2 2
2 2
V (0.6) C
e 1 50 1
C C
? ? ?
= 50 1 0.36 ? = 50 ? 0.8 = 40 cm.
The lengths observed are 40 cm ? 25 cm ? 10 cm.
3. L = 1 m
a) v  3 ? 10
5
m/s
L ? = 
10
6
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9999995 m
b) v = 3 x 10
6
m/s
L ? = 
12
4
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.99995 m.
c) v = 3 ? 10
7
m/s
L ? = 
14
2
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9949 = 0.995 m.
4. v = 0.6 cm/sec ; t = 1 sec
a) length observed by the observer = vt ? 0.6 ? 3 ? 10
6
? 1.8 ? 10
8
m
b) l = 
2 2
0
1 v / c ? ? ? 1.8 ? 10
8
= 
2 2
0
2
(0.6) C
1
C
? ?
l
0
= 
8
1.8 10
0.8
?
= 2.25 ? 10
8
m/s.
5. The rectangular field appears to be a square when the length becomes equal to the breadth i.e. 50 m.
i.e. L ? = 50 ; L = 100 ; v = ?
C = 3 ? 10
8
m/s
We know, L ? = 
2 2
L 1 v / c ?
? 50 = 
2 2
100 1 v / c ? ? v = 3 / 2C = 0.866 C.
6. L
0
= 1000 km = 10
6
m
v = 360 km/h = (360 ? 5) / 18 = 100 m/sec.
a) h ? = 
2
4
2 2 6 6
0
8 6
100 10
h 1 v / c 10 1 10 1
3 10 9 10
? ?
? ? ? ? ?
? ?
? ? ? ?
= 10
9
.
Solving change in length = 56 nm.
b) ?t = ?L/v = 56 nm / 100 m = 0.56 ns. ?
The Special Theory of Relativity
2
7. v = 180 km/hr = 50 m/s
t = 10 hours
let the rest dist. be L.
L ? = 
2 2
L 1 v / c ? ? L ? = 10 ? 180 = 1800 k.m.
1800 = 
2
5 2
180
L 1
(3 10 )
?
?
or, 1800 ? 1800 = L(1 – 36 ? 10
–14
)
or, L = 
6
14
3.24 10
1 36 10
?
?
? ?
= 1800 + 25 ? 10
–12
or 25 nm more than 1800 km.
b) Time taken in road frame by Car to cover the dist = 
6 9
1.8 10 25 10
50
?
? ? ?
= 0.36 ? 10
5
+ 5 ? 10
–8
= 10 hours + 0.5 ns.
8. a) u = 5c/13
?t = 
2 2 2
2
t 1y y 13 13
y
12 12
1 v / c 25c
1
169c
?
? ? ?
?
?
.
The time interval between the consecutive birthday celebration is 13/12 y.
b) The fried on the earth also calculates the same speed. ?
9. The birth timings recorded by the station clocks is proper time interval because it is the ground frame. 
That of the train is improper as it records the time at two different places. The proper time interval ?T is 
less than improper.
i.e. ?T ? = v ?T
Hence for – (a) up train ? Delhi baby is elder (b) down train ? Howrah baby is elder. ?
10. The clocks of a moving frame are out of synchronization. The clock at the rear end leads the one at 
from by L
0
V/C
2
where L
0
is the rest separation between the clocks, and v is speed of the moving frame.
Thus, the baby adjacent to the guard cell is elder.
11. v = 0.9999 C ; ?t = One day in earth ; ?t ? = One day in heaven
v = 
2 2 2 2
2
1 1 1
0.014141782
1 v / c (0.9999) C
1
C
? ?
?
?
= 70.712
?t ? = v ?t ;
Hence, ?t ? = 70.7 days in heaven. ?
12. t = 100 years ; V = 60/100 K ; C = 0.6 C.
?t = 
2 2 2 2
2
t 100y 100y
0.8
1 V / C (0.6) C
1
C
? ?
?
?
= 125 y. ?
13. We know
f ? = 
2 2
f 1 V / C ?
f ? = apparent frequency ; 
f = frequency in rest frame
v = 0.8 C
f ? = 
2
2
0.64C
1 0.36
C
? ? = 0.6 s
–1
A B 
The Special Theory of Relativity
3
14. V = 100 km/h, ?t = Proper time interval = 10 hours
?t ? = 
2 2 2
8
t 10 3600
1 V / C
1000
1
36 3 10
? ?
?
?
? ?
?
? ?
? ? ? ?
?t ? – ?t = 10 ? 3600 
2
8
1
1
1000
1
36 3 10
? ?
?
? ?
? ?
? ?
?
? ?
? ?
? ? ? ? ? ?
By solving we get, ?t ? – ?t = 0.154 ns.
? Time will lag by 0.154 ns. ?
15. Let the volume (initial) be V.
V ? = V/2
So, V/2 = 
2 2
v 1 V / C ?
? C/2 = 
2 2
C V ? ? C
2
/4 = C
2
– V
2
? V
2
= 
2
2 2
C 3
C C
4 4
? ? ? V = 
3
C
2
.
16. d = 1 cm, v = 0.995 C
a) time in Laboratory frame = 
2
d 1 10
v 0.995C
?
?
?
= 
2
8
1 10
0.995 3 10
?
?
? ?
= 33.5 ? 10
–12
= 33.5 PS
b) In the frame of the particle
t ? = 
12
2 2 2
t 33.5 10
1 V / C 1 (0.995)
?
?
?
? ?
= 335.41 PS.
17. x = 1 cm = 1 ? 10
–2
m ; K = 500 N/m, m = 200 g
Energy stored = ½ Kx
2
= ½ ? 500 ? 10
–4
= 0.025 J
Increase in mass = 
2 16
0.025 0.025
C 9 10
?
?
Fractional Change of max = 
16 1
0.025 1
9 10 2 10
?
?
? ?
= 0.01388 ? 10
–16
= 1.4 ? 10
–8
.
18. Q = MS ?? ? 1 ? 4200 (100 – 0) = 420000 J.
E = ( ?m)C
2
? ?m = 
2 2 8 2
E Q 420000
C C (3 10 )
? ?
?
= 4.66 ? 10
–12
= 4.7 ? 10
–12
kg.
19. Energy possessed by a monoatomic gas = 3/2 nRdt.
Now dT = 10, n = 1 mole, R = 8.3 J/mol-K.
E = 3/2 ? t ? 8.3 ? 10 
Loss in mass = 
2 15
1.5 8.3 10 124.5
C 9 10
? ?
?
?
= 1383 ? 10
–16
= 1.38 ? 10
–15
Kg.
20. Let initial mass be m
½ mv
2
= E
? E = 
2
1 12 5 m 50
m
2 18 9
? ? ? ?
?
? ?
? ?
?m = E/C
2
The Special Theory of Relativity
4
? ?m = 
16
m 50
9 9 10
?
? ?
?
16
m 50
m 81 10
?
?
?
? 0.617 ? 10
–16
= 6.17 ? 10
–17
.
21. Given : Bulb is 100 Watt = 100 J/s
So, 100 J in expended per 1 sec.
Hence total energy expended in 1 year = 100 ? 3600 ? 24 ? 365 = 3153600000 J
Change in mass recorded = 
2 16
Total energy 315360000
C 9 10
?
?
= 3.504 ? 10
8
? 10
–16
kg = 3.5 ? 10
–8
Kg.
22. I = 1400 w/m
2
Power = 1400 w/m
2
? A
= (1400 ? 4 ?R
2
)w = 1400 ? 4 ? ? (1.5 ? 10
11
)
2
= 1400 ? 4 ? ? (1/5)
2
? 10
22
a)
2
2
E mC m E / t
t t t C
? ?
? ? ?
C
2
= 
22
16
1400 4 2.25 10
9 10
? ? ? ?
?
= 1696 ? 10
66
= 4.396 ? 10
9
= 4.4 ? 10
9
.
b) 4.4 ? 10
9
Kg disintegrates in 1 sec.
2 ? 10
30
Kg disintegrates in 
30
9
2 10
4.4 10
?
?
sec.
= 
21
1 10
2.2 365 24 3600
? ?
?
? ?
? ? ? ? ?
= 1.44 ? 10
–8
? 10
21
y = 1.44 ? 10
13
y. 
23. Mass of Electron = Mass of positron = 9.1 ? 10
–31
Kg
Both are oppositely charged and they annihilate each other.
Hence, ?m = m + m = 2 ? 9.1 ? 10
–31
Kg
Energy of the resulting ? particle = ?m C
2
= 2 ? 9.1 ? 10
–31
? 9 ? 10
16
J = 
15
19
2 9.1 9 10
1.6 10
?
?
? ? ?
?
ev
= 102.37 ? 10
4
ev = 1.02 ? 10
6
ev = 1.02 Mev. ?
24. m
e
= 9.1 ? 10
–31
, v
0
= 0.8 C
a) m ? = 
31 31
2 2 2 2
Me 9.1 10 9.1 10
0.6
1 V / C 1 0.64C / C
? ?
? ?
? ?
? ?
= 15.16 ? 10
–31
Kg = 15.2 ? 10
–31
Kg.
b) K.E. of the electron  : m ?C
2
– m
e
C
2
= (m ? – m
e
) C
2
= (15.2 ? 10
–31
– 9.1 ? 10
–31
)(3 ? 10
8
)
2
= (15.2 ? 9.1) ? 9 ? 10
–31
? 10
18
J
= 54.6 ? 10
–15
J = 5.46 ? 10
–14
J = 5.5 ? 10
–14
J.
c) Momentum of the given electron = Apparent mass ? given velocity 
= 15.2 ? 10
–31
– 0.8 ? 3 ? 10
8
m/s = 36.48 ? 10
–23
kg m/s
= 3.65 ? 10
–22
kg m/s 
25. a) ev – m
0
C
2
= 
2
0
2
2
m C
V
2 1
C
?
? ev – 9.1 ? 10
–31
? 9 ? 10
16
= 
31 16
2
2
9.1 9 10 10
0.36C
2 1
C
?
? ? ?
?
? eV – 9.1 ? 9 ? 10
–15
sun
R
Page 5


47.1
THE SPECIAL THEORY OF RELATIVITY
CHAPTER - 47
1. S = 1000 km = 10
6
m
The process requires minimum possible time if the velocity is maximum.
We know that maximum velocity can be that of light i.e. = 3 ? 10
8
m/s.
So, time = 
6
8
Distance 10 1
Speed 300 3 10
? ?
?
s.
2. l = 50 cm, b = 25 cm, h = 10 cm, v = 0.6 c
a) The observer in the train notices the same value of l, b, h because relativity are in due to difference 
in frames.
b) In 2 different frames, the component of length parallel to the velocity undergoes contraction but the 
perpendicular components remain the same. So length which is parallel to the x-axis changes and 
breadth and height remain the same.
e ? = 
2 2 2
2 2
V (0.6) C
e 1 50 1
C C
? ? ?
= 50 1 0.36 ? = 50 ? 0.8 = 40 cm.
The lengths observed are 40 cm ? 25 cm ? 10 cm.
3. L = 1 m
a) v  3 ? 10
5
m/s
L ? = 
10
6
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9999995 m
b) v = 3 x 10
6
m/s
L ? = 
12
4
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.99995 m.
c) v = 3 ? 10
7
m/s
L ? = 
14
2
16
9 10
1 1 1 10
9 10
?
?
? ? ?
?
= 0.9949 = 0.995 m.
4. v = 0.6 cm/sec ; t = 1 sec
a) length observed by the observer = vt ? 0.6 ? 3 ? 10
6
? 1.8 ? 10
8
m
b) l = 
2 2
0
1 v / c ? ? ? 1.8 ? 10
8
= 
2 2
0
2
(0.6) C
1
C
? ?
l
0
= 
8
1.8 10
0.8
?
= 2.25 ? 10
8
m/s.
5. The rectangular field appears to be a square when the length becomes equal to the breadth i.e. 50 m.
i.e. L ? = 50 ; L = 100 ; v = ?
C = 3 ? 10
8
m/s
We know, L ? = 
2 2
L 1 v / c ?
? 50 = 
2 2
100 1 v / c ? ? v = 3 / 2C = 0.866 C.
6. L
0
= 1000 km = 10
6
m
v = 360 km/h = (360 ? 5) / 18 = 100 m/sec.
a) h ? = 
2
4
2 2 6 6
0
8 6
100 10
h 1 v / c 10 1 10 1
3 10 9 10
? ?
? ? ? ? ?
? ?
? ? ? ?
= 10
9
.
Solving change in length = 56 nm.
b) ?t = ?L/v = 56 nm / 100 m = 0.56 ns. ?
The Special Theory of Relativity
2
7. v = 180 km/hr = 50 m/s
t = 10 hours
let the rest dist. be L.
L ? = 
2 2
L 1 v / c ? ? L ? = 10 ? 180 = 1800 k.m.
1800 = 
2
5 2
180
L 1
(3 10 )
?
?
or, 1800 ? 1800 = L(1 – 36 ? 10
–14
)
or, L = 
6
14
3.24 10
1 36 10
?
?
? ?
= 1800 + 25 ? 10
–12
or 25 nm more than 1800 km.
b) Time taken in road frame by Car to cover the dist = 
6 9
1.8 10 25 10
50
?
? ? ?
= 0.36 ? 10
5
+ 5 ? 10
–8
= 10 hours + 0.5 ns.
8. a) u = 5c/13
?t = 
2 2 2
2
t 1y y 13 13
y
12 12
1 v / c 25c
1
169c
?
? ? ?
?
?
.
The time interval between the consecutive birthday celebration is 13/12 y.
b) The fried on the earth also calculates the same speed. ?
9. The birth timings recorded by the station clocks is proper time interval because it is the ground frame. 
That of the train is improper as it records the time at two different places. The proper time interval ?T is 
less than improper.
i.e. ?T ? = v ?T
Hence for – (a) up train ? Delhi baby is elder (b) down train ? Howrah baby is elder. ?
10. The clocks of a moving frame are out of synchronization. The clock at the rear end leads the one at 
from by L
0
V/C
2
where L
0
is the rest separation between the clocks, and v is speed of the moving frame.
Thus, the baby adjacent to the guard cell is elder.
11. v = 0.9999 C ; ?t = One day in earth ; ?t ? = One day in heaven
v = 
2 2 2 2
2
1 1 1
0.014141782
1 v / c (0.9999) C
1
C
? ?
?
?
= 70.712
?t ? = v ?t ;
Hence, ?t ? = 70.7 days in heaven. ?
12. t = 100 years ; V = 60/100 K ; C = 0.6 C.
?t = 
2 2 2 2
2
t 100y 100y
0.8
1 V / C (0.6) C
1
C
? ?
?
?
= 125 y. ?
13. We know
f ? = 
2 2
f 1 V / C ?
f ? = apparent frequency ; 
f = frequency in rest frame
v = 0.8 C
f ? = 
2
2
0.64C
1 0.36
C
? ? = 0.6 s
–1
A B 
The Special Theory of Relativity
3
14. V = 100 km/h, ?t = Proper time interval = 10 hours
?t ? = 
2 2 2
8
t 10 3600
1 V / C
1000
1
36 3 10
? ?
?
?
? ?
?
? ?
? ? ? ?
?t ? – ?t = 10 ? 3600 
2
8
1
1
1000
1
36 3 10
? ?
?
? ?
? ?
? ?
?
? ?
? ?
? ? ? ? ? ?
By solving we get, ?t ? – ?t = 0.154 ns.
? Time will lag by 0.154 ns. ?
15. Let the volume (initial) be V.
V ? = V/2
So, V/2 = 
2 2
v 1 V / C ?
? C/2 = 
2 2
C V ? ? C
2
/4 = C
2
– V
2
? V
2
= 
2
2 2
C 3
C C
4 4
? ? ? V = 
3
C
2
.
16. d = 1 cm, v = 0.995 C
a) time in Laboratory frame = 
2
d 1 10
v 0.995C
?
?
?
= 
2
8
1 10
0.995 3 10
?
?
? ?
= 33.5 ? 10
–12
= 33.5 PS
b) In the frame of the particle
t ? = 
12
2 2 2
t 33.5 10
1 V / C 1 (0.995)
?
?
?
? ?
= 335.41 PS.
17. x = 1 cm = 1 ? 10
–2
m ; K = 500 N/m, m = 200 g
Energy stored = ½ Kx
2
= ½ ? 500 ? 10
–4
= 0.025 J
Increase in mass = 
2 16
0.025 0.025
C 9 10
?
?
Fractional Change of max = 
16 1
0.025 1
9 10 2 10
?
?
? ?
= 0.01388 ? 10
–16
= 1.4 ? 10
–8
.
18. Q = MS ?? ? 1 ? 4200 (100 – 0) = 420000 J.
E = ( ?m)C
2
? ?m = 
2 2 8 2
E Q 420000
C C (3 10 )
? ?
?
= 4.66 ? 10
–12
= 4.7 ? 10
–12
kg.
19. Energy possessed by a monoatomic gas = 3/2 nRdt.
Now dT = 10, n = 1 mole, R = 8.3 J/mol-K.
E = 3/2 ? t ? 8.3 ? 10 
Loss in mass = 
2 15
1.5 8.3 10 124.5
C 9 10
? ?
?
?
= 1383 ? 10
–16
= 1.38 ? 10
–15
Kg.
20. Let initial mass be m
½ mv
2
= E
? E = 
2
1 12 5 m 50
m
2 18 9
? ? ? ?
?
? ?
? ?
?m = E/C
2
The Special Theory of Relativity
4
? ?m = 
16
m 50
9 9 10
?
? ?
?
16
m 50
m 81 10
?
?
?
? 0.617 ? 10
–16
= 6.17 ? 10
–17
.
21. Given : Bulb is 100 Watt = 100 J/s
So, 100 J in expended per 1 sec.
Hence total energy expended in 1 year = 100 ? 3600 ? 24 ? 365 = 3153600000 J
Change in mass recorded = 
2 16
Total energy 315360000
C 9 10
?
?
= 3.504 ? 10
8
? 10
–16
kg = 3.5 ? 10
–8
Kg.
22. I = 1400 w/m
2
Power = 1400 w/m
2
? A
= (1400 ? 4 ?R
2
)w = 1400 ? 4 ? ? (1.5 ? 10
11
)
2
= 1400 ? 4 ? ? (1/5)
2
? 10
22
a)
2
2
E mC m E / t
t t t C
? ?
? ? ?
C
2
= 
22
16
1400 4 2.25 10
9 10
? ? ? ?
?
= 1696 ? 10
66
= 4.396 ? 10
9
= 4.4 ? 10
9
.
b) 4.4 ? 10
9
Kg disintegrates in 1 sec.
2 ? 10
30
Kg disintegrates in 
30
9
2 10
4.4 10
?
?
sec.
= 
21
1 10
2.2 365 24 3600
? ?
?
? ?
? ? ? ? ?
= 1.44 ? 10
–8
? 10
21
y = 1.44 ? 10
13
y. 
23. Mass of Electron = Mass of positron = 9.1 ? 10
–31
Kg
Both are oppositely charged and they annihilate each other.
Hence, ?m = m + m = 2 ? 9.1 ? 10
–31
Kg
Energy of the resulting ? particle = ?m C
2
= 2 ? 9.1 ? 10
–31
? 9 ? 10
16
J = 
15
19
2 9.1 9 10
1.6 10
?
?
? ? ?
?
ev
= 102.37 ? 10
4
ev = 1.02 ? 10
6
ev = 1.02 Mev. ?
24. m
e
= 9.1 ? 10
–31
, v
0
= 0.8 C
a) m ? = 
31 31
2 2 2 2
Me 9.1 10 9.1 10
0.6
1 V / C 1 0.64C / C
? ?
? ?
? ?
? ?
= 15.16 ? 10
–31
Kg = 15.2 ? 10
–31
Kg.
b) K.E. of the electron  : m ?C
2
– m
e
C
2
= (m ? – m
e
) C
2
= (15.2 ? 10
–31
– 9.1 ? 10
–31
)(3 ? 10
8
)
2
= (15.2 ? 9.1) ? 9 ? 10
–31
? 10
18
J
= 54.6 ? 10
–15
J = 5.46 ? 10
–14
J = 5.5 ? 10
–14
J.
c) Momentum of the given electron = Apparent mass ? given velocity 
= 15.2 ? 10
–31
– 0.8 ? 3 ? 10
8
m/s = 36.48 ? 10
–23
kg m/s
= 3.65 ? 10
–22
kg m/s 
25. a) ev – m
0
C
2
= 
2
0
2
2
m C
V
2 1
C
?
? ev – 9.1 ? 10
–31
? 9 ? 10
16
= 
31 16
2
2
9.1 9 10 10
0.36C
2 1
C
?
? ? ?
?
? eV – 9.1 ? 9 ? 10
–15
sun
R
The Special Theory of Relativity
5
= 
15
9.1 9 10
2 0.8
?
? ?
?
? eV – 9.1 ? 9 ? 10
–15
= 
15
9.1 9 10
1.6
?
? ?
? eV = 
15
9.1 9
9.1 9 10
1.6
?
? ? ?
? ? ?
? ?
? ?
= eV
15
81.9
81.9 10
1.6
?
? ?
? ?
? ?
? ?
eV = 133.0875 ? 10
–15
? V = 83.179 ? 10
4
= 831 KV.
b) eV – m
0
C
2
= 
2
0
2
2
m C
V
2 1
C
?
? eV – 9.1 ? 9 ? 10
–19
? 9 ? 10
16
= 
15
2
2
9.1 9 10
0.81C
2 1
C
?
? ?
?
? eV – 81.9 ? 10
–15
= 
15
9.1 9 10
2 0.435
?
? ?
?
? eV = 12.237 ? 10
–15
? V = 
15
19
12.237 10
1.6 10
?
?
?
?
= 76.48 kV.
V = 0.99 C = eV – m
0
C
2
= 
2
0
2
2
m C
V
2 1
C
?
? eV = 
2
0
2
2
m C
V
2 1
C
?
+m
0
C
2
= 
31 16
31 16
2
9.1 10 9 10
9.1 10 9 10
2 1 (0.99)
?
?
? ? ?
? ? ? ?
?
? eV = 372.18 ? 10
–15
? V =
15
19
372.18 20
1.6 10
?
?
?
?
= 272.6 ? 10
4
? V = 2.726 ? 10
6
= 2.7 MeV.
26. a)
2
0
2
2
m C
V
1
C
?
– m
0
C
2 
= 1.6 ? 10
–19
?
2
0
2 2
1
m C 1
1 V / C
? ?
?
? ?
? ? ?
= 1.6 ? 10
–19
?
2 2
1
1
1 V / C
?
?
= 
19
31 16
1.6 10
9.1 10 9 10
?
?
?
? ? ?
? V = C ? 0.001937231 = 3 ? 0.001967231 ? 0
8
= 5.92 ? 10
5
m/s.
b)
2
0
2
2
m C
V
1
C
?
– m
0
C
2 
= 1.6 ? 10
–19
? 10 ? 10
3
?
2
0
2 2
1
m C 1
1 V / C
? ?
?
? ?
? ? ?
= 1.6 ? 10
–15
?
2 2
1
1
1 V / C
?
?
= 
15
15
1.6 10
9.1 9 10
?
?
? ?
? V = 0.584475285 ? 10
8
= 5.85 ? 10
7
m/s.
c) K.E. = 10 Mev = 10 ? 10
6
eV = 10
7
? 1.6 ? 10
–19
J = 1.6 ? 10
–12
J
?
2
0
2
2
m C
V
1
C
?
– m
0
C
2 
= 1.6 ? 10
–12
J
? V
2
= 8..999991359 ? 10
16
? V = 2.999987038 ? 10
8
.
Read More
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Related Searches

Physics Class 11 Notes | EduRev

,

pdf

,

past year papers

,

Extra Questions

,

Previous Year Questions with Solutions

,

MCQs

,

Exam

,

Objective type Questions

,

video lectures

,

Sample Paper

,

Semester Notes

,

Important questions

,

Chapter 47 : The Special Theory of Relativity - HC Verma Solution

,

Physics Class 11 Notes | EduRev

,

Summary

,

Chapter 47 : The Special Theory of Relativity - HC Verma Solution

,

Free

,

Viva Questions

,

Physics Class 11 Notes | EduRev

,

practice quizzes

,

Chapter 47 : The Special Theory of Relativity - HC Verma Solution

,

mock tests for examination

,

ppt

,

shortcuts and tricks

,

study material

;