Table of contents |
|
Decimal Numbers |
|
Place Value |
|
Rounding to the Nearest Whole Number |
|
Multiplying and Dividing Decimals by 10 and 100 |
|
Patterns and Sequences |
|
Decimal numbers include a whole number part and a fractional part separated by a decimal point.
Example: The number 1.25 is read as "one point two five" and consists of:
Tenths are 10 times smaller than ones:
Hundredths are 100 times smaller than ones:
Representation of 1.25:
Equivalence to fractions:
Reading and writing decimal numbers:
Decimal numbers can be decomposed into place value parts:
Regrouping allows numbers to be expressed differently:
Using counters to represent numbers:
Rounding to the nearest whole number involves identifying the previous and next whole numbers.\|
Rules for rounding:
If the tenths digit is less than 5, round down to the previous whole number.
If the tenths digit is 5 or greater, round up to the next whole number.
Multiplying a decimal by 10 shifts digits one place to the left:
Dividing a decimal by 10 shifts digits one place to the right:
Multiplying by 100 shifts digits two places to the left:
Dividing by 100 shifts digits two places to the right:
Relationships between masses or heights:
A linear sequence has a constant difference between consecutive terms.
Term-to-term rule: Add or subtract the constant difference to get the next term.
Example: Sequence of straws (30, 18, 7, …):
Finding terms:
43 docs|21 tests
|
1. What are decimal numbers and how are they used in everyday life? | ![]() |
2. How do you convert a fraction to a decimal? | ![]() |
3. What is the importance of place value in decimal numbers? | ![]() |
4. How can you add and subtract decimal numbers? | ![]() |
5. What are some common mistakes when working with decimal numbers? | ![]() |