Page 1
Classification of Elements & Periodicity in
Properties
Why Classify Elements
Organize elements, predict properties, discover new elements, standardize communication, aid
education.
Genesis of Periodic Classification
Dobereiner’s Triads
? Groups of three; middle atomic mass ˜ mean of others
(e.g., Li:7, Na:23, K:39; mean = (7 + 39)/2 = 23).
? Limitations: Only 5 triads, new/known elements didn’t fit.
Newland’s Octaves
? Every 8th element is similar (e.g., H, F, Cl).
? Limitations: Valid up to Ca, dissimilar elements grouped, no room for noble gases.
Lothar Meyer’s Curve
? Atomic volume vs. atomic mass; periodic properties (e.g., peaks at alkali metals).
? Limitations: Less predictive, no empirical basis.
Mendeleev’s Periodic Table
? Arranged by increasing atomic weight, similar properties in columns.
? Periodic Law: Properties are periodic functions of atomic weights.
Page 2
Classification of Elements & Periodicity in
Properties
Why Classify Elements
Organize elements, predict properties, discover new elements, standardize communication, aid
education.
Genesis of Periodic Classification
Dobereiner’s Triads
? Groups of three; middle atomic mass ˜ mean of others
(e.g., Li:7, Na:23, K:39; mean = (7 + 39)/2 = 23).
? Limitations: Only 5 triads, new/known elements didn’t fit.
Newland’s Octaves
? Every 8th element is similar (e.g., H, F, Cl).
? Limitations: Valid up to Ca, dissimilar elements grouped, no room for noble gases.
Lothar Meyer’s Curve
? Atomic volume vs. atomic mass; periodic properties (e.g., peaks at alkali metals).
? Limitations: Less predictive, no empirical basis.
Mendeleev’s Periodic Table
? Arranged by increasing atomic weight, similar properties in columns.
? Periodic Law: Properties are periodic functions of atomic weights.
? Predicted Eka-Aluminium (Ga), Eka-Silicon (Ge), Eka-Boron (Sc).
? Limitations: Isotopes, incorrect mass order, H position.
Modern Periodic Table
? Modern Periodic Law: Properties are periodic functions of atomic numbers.
? Structure: Periods (rows, energy levels), groups (columns, similar properties).
? Classification: Metals (left), non-metals (top-right), metalloids (diagonal).
? Blocks: s, p, d, f (based on orbital filling).
? Trends: Atomic radius, ionization enthalpy, electron gain enthalpy, electronegativity.
? Special Groups: Transition metals (d-block), lanthanides/actinides (f-block).
Nomenclature (Z > 100)
? Rules: Numerical roots (0 = nil, 1 = un, 2 = bi, etc.) + -ium; symbol from root initials (e.g.,
Z = 120 ? unbinilium, Ubn).
? Example: Z = 113 ? ununtrium (Uut), official: Nihonium (Nh).
Electronic Configurations & Blocks
Aufbau Principle
? Electrons fill orbitals by increasing energy: 1s, 2s, 2p, 3s, 3p, 3d, etc.
s-Block
? Groups 1 (ns¹, alkali metals), 2 (ns², alkaline earth metals).
? Reactive, form ionic compounds, low ionization enthalpy.
p-Block
? Groups 13–18 (ns²np¹ ? 6); non-metals, metalloids, noble gases (ns²np 6, low reactivity).
Page 3
Classification of Elements & Periodicity in
Properties
Why Classify Elements
Organize elements, predict properties, discover new elements, standardize communication, aid
education.
Genesis of Periodic Classification
Dobereiner’s Triads
? Groups of three; middle atomic mass ˜ mean of others
(e.g., Li:7, Na:23, K:39; mean = (7 + 39)/2 = 23).
? Limitations: Only 5 triads, new/known elements didn’t fit.
Newland’s Octaves
? Every 8th element is similar (e.g., H, F, Cl).
? Limitations: Valid up to Ca, dissimilar elements grouped, no room for noble gases.
Lothar Meyer’s Curve
? Atomic volume vs. atomic mass; periodic properties (e.g., peaks at alkali metals).
? Limitations: Less predictive, no empirical basis.
Mendeleev’s Periodic Table
? Arranged by increasing atomic weight, similar properties in columns.
? Periodic Law: Properties are periodic functions of atomic weights.
? Predicted Eka-Aluminium (Ga), Eka-Silicon (Ge), Eka-Boron (Sc).
? Limitations: Isotopes, incorrect mass order, H position.
Modern Periodic Table
? Modern Periodic Law: Properties are periodic functions of atomic numbers.
? Structure: Periods (rows, energy levels), groups (columns, similar properties).
? Classification: Metals (left), non-metals (top-right), metalloids (diagonal).
? Blocks: s, p, d, f (based on orbital filling).
? Trends: Atomic radius, ionization enthalpy, electron gain enthalpy, electronegativity.
? Special Groups: Transition metals (d-block), lanthanides/actinides (f-block).
Nomenclature (Z > 100)
? Rules: Numerical roots (0 = nil, 1 = un, 2 = bi, etc.) + -ium; symbol from root initials (e.g.,
Z = 120 ? unbinilium, Ubn).
? Example: Z = 113 ? ununtrium (Uut), official: Nihonium (Nh).
Electronic Configurations & Blocks
Aufbau Principle
? Electrons fill orbitals by increasing energy: 1s, 2s, 2p, 3s, 3p, 3d, etc.
s-Block
? Groups 1 (ns¹, alkali metals), 2 (ns², alkaline earth metals).
? Reactive, form ionic compounds, low ionization enthalpy.
p-Block
? Groups 13–18 (ns²np¹ ? 6); non-metals, metalloids, noble gases (ns²np 6, low reactivity).
d-Block
? Groups 3–12 ((n-1)d¹ ?¹ °ns ° ?²); transition metals, variable oxidation states, colored ions.
? Exception: Zn, Cd, Hg ((n-1)d 1 0ns²) not typical transition metals.
f-Block Elements
? Lanthanides (4f, Ce–Lu), actinides (5f, Th–Lr); inner transition, radioactive actinides.
Metals, Non-Metals, Metalloids
? Metals: Conductive, malleable, high melting/boiling points (left).
? Non-Metals: Poor conductors, brittle, low melting/boiling points (top-right).
? Metalloids: Intermediate properties, semiconductors (B, Si, Ge, As, Sb, Te, Po).
Periodic Trends in Physical Properties
Atomic Radius
? Decreases across period (? nuclear charge), increases down group (? shells).
? Transition metals: Slight ? (Sc–Mn), constant (Fe–Ni), slight ? (Cu–Zn).
? Lanthanide contraction: ? radius in 4f series.
Ionic Radius
? Cations: Smaller than parent (? e ?). Anions: Larger (? e ? repulsion).
? Isoelectronic species: Smaller with higher nuclear charge.
Ionization Enthalpy (IE)
? ? across period (? radius, ? charge), ? down group (? radius).
? Factors: Size, nuclear charge, penetration (s>p>d>f), shielding, half-filled orbitals.
Page 4
Classification of Elements & Periodicity in
Properties
Why Classify Elements
Organize elements, predict properties, discover new elements, standardize communication, aid
education.
Genesis of Periodic Classification
Dobereiner’s Triads
? Groups of three; middle atomic mass ˜ mean of others
(e.g., Li:7, Na:23, K:39; mean = (7 + 39)/2 = 23).
? Limitations: Only 5 triads, new/known elements didn’t fit.
Newland’s Octaves
? Every 8th element is similar (e.g., H, F, Cl).
? Limitations: Valid up to Ca, dissimilar elements grouped, no room for noble gases.
Lothar Meyer’s Curve
? Atomic volume vs. atomic mass; periodic properties (e.g., peaks at alkali metals).
? Limitations: Less predictive, no empirical basis.
Mendeleev’s Periodic Table
? Arranged by increasing atomic weight, similar properties in columns.
? Periodic Law: Properties are periodic functions of atomic weights.
? Predicted Eka-Aluminium (Ga), Eka-Silicon (Ge), Eka-Boron (Sc).
? Limitations: Isotopes, incorrect mass order, H position.
Modern Periodic Table
? Modern Periodic Law: Properties are periodic functions of atomic numbers.
? Structure: Periods (rows, energy levels), groups (columns, similar properties).
? Classification: Metals (left), non-metals (top-right), metalloids (diagonal).
? Blocks: s, p, d, f (based on orbital filling).
? Trends: Atomic radius, ionization enthalpy, electron gain enthalpy, electronegativity.
? Special Groups: Transition metals (d-block), lanthanides/actinides (f-block).
Nomenclature (Z > 100)
? Rules: Numerical roots (0 = nil, 1 = un, 2 = bi, etc.) + -ium; symbol from root initials (e.g.,
Z = 120 ? unbinilium, Ubn).
? Example: Z = 113 ? ununtrium (Uut), official: Nihonium (Nh).
Electronic Configurations & Blocks
Aufbau Principle
? Electrons fill orbitals by increasing energy: 1s, 2s, 2p, 3s, 3p, 3d, etc.
s-Block
? Groups 1 (ns¹, alkali metals), 2 (ns², alkaline earth metals).
? Reactive, form ionic compounds, low ionization enthalpy.
p-Block
? Groups 13–18 (ns²np¹ ? 6); non-metals, metalloids, noble gases (ns²np 6, low reactivity).
d-Block
? Groups 3–12 ((n-1)d¹ ?¹ °ns ° ?²); transition metals, variable oxidation states, colored ions.
? Exception: Zn, Cd, Hg ((n-1)d 1 0ns²) not typical transition metals.
f-Block Elements
? Lanthanides (4f, Ce–Lu), actinides (5f, Th–Lr); inner transition, radioactive actinides.
Metals, Non-Metals, Metalloids
? Metals: Conductive, malleable, high melting/boiling points (left).
? Non-Metals: Poor conductors, brittle, low melting/boiling points (top-right).
? Metalloids: Intermediate properties, semiconductors (B, Si, Ge, As, Sb, Te, Po).
Periodic Trends in Physical Properties
Atomic Radius
? Decreases across period (? nuclear charge), increases down group (? shells).
? Transition metals: Slight ? (Sc–Mn), constant (Fe–Ni), slight ? (Cu–Zn).
? Lanthanide contraction: ? radius in 4f series.
Ionic Radius
? Cations: Smaller than parent (? e ?). Anions: Larger (? e ? repulsion).
? Isoelectronic species: Smaller with higher nuclear charge.
Ionization Enthalpy (IE)
? ? across period (? radius, ? charge), ? down group (? radius).
? Factors: Size, nuclear charge, penetration (s>p>d>f), shielding, half-filled orbitals.
Electron Gain Enthalpy (EGH)
? More negative across periods (except noble gases), less negative down group.
? Factors: Size, nuclear charge, shielding, half-filled orbitals.
Electronegativity
? ? across period, ? down group.
? Scales: Pauling (F=4), Mulliken, Allred-Rochow.
? Factors: Radius, nuclear charge, oxidation state, hybridization (sp > sp² > sp³).
Periodic Trends in Chemical Properties
Valence/Oxidation States
? Period: ? to 4, then ? to 0. Group: Constant valence; transition elements vary.
? Rule: Valence = e ? (=4) or 8–e ? (>4).
Anomalous Properties (Second Period)
? Li–F: Small size, high electronegativity, covalent compounds, diagonal relationships
(e.g., Li–Mg).
Chemical Reactivity
? High at period extremes: Left (lose e ?), right (gain e ?).
? Oxides: Basic (left, e.g., Na 2O), acidic (right, e.g., SO 3), amphoteric/neutral (center, e.g.,
Al 2O 3).
? Metallic character: ? across period, ? down group.
Periodic Trends Table
Page 5
Classification of Elements & Periodicity in
Properties
Why Classify Elements
Organize elements, predict properties, discover new elements, standardize communication, aid
education.
Genesis of Periodic Classification
Dobereiner’s Triads
? Groups of three; middle atomic mass ˜ mean of others
(e.g., Li:7, Na:23, K:39; mean = (7 + 39)/2 = 23).
? Limitations: Only 5 triads, new/known elements didn’t fit.
Newland’s Octaves
? Every 8th element is similar (e.g., H, F, Cl).
? Limitations: Valid up to Ca, dissimilar elements grouped, no room for noble gases.
Lothar Meyer’s Curve
? Atomic volume vs. atomic mass; periodic properties (e.g., peaks at alkali metals).
? Limitations: Less predictive, no empirical basis.
Mendeleev’s Periodic Table
? Arranged by increasing atomic weight, similar properties in columns.
? Periodic Law: Properties are periodic functions of atomic weights.
? Predicted Eka-Aluminium (Ga), Eka-Silicon (Ge), Eka-Boron (Sc).
? Limitations: Isotopes, incorrect mass order, H position.
Modern Periodic Table
? Modern Periodic Law: Properties are periodic functions of atomic numbers.
? Structure: Periods (rows, energy levels), groups (columns, similar properties).
? Classification: Metals (left), non-metals (top-right), metalloids (diagonal).
? Blocks: s, p, d, f (based on orbital filling).
? Trends: Atomic radius, ionization enthalpy, electron gain enthalpy, electronegativity.
? Special Groups: Transition metals (d-block), lanthanides/actinides (f-block).
Nomenclature (Z > 100)
? Rules: Numerical roots (0 = nil, 1 = un, 2 = bi, etc.) + -ium; symbol from root initials (e.g.,
Z = 120 ? unbinilium, Ubn).
? Example: Z = 113 ? ununtrium (Uut), official: Nihonium (Nh).
Electronic Configurations & Blocks
Aufbau Principle
? Electrons fill orbitals by increasing energy: 1s, 2s, 2p, 3s, 3p, 3d, etc.
s-Block
? Groups 1 (ns¹, alkali metals), 2 (ns², alkaline earth metals).
? Reactive, form ionic compounds, low ionization enthalpy.
p-Block
? Groups 13–18 (ns²np¹ ? 6); non-metals, metalloids, noble gases (ns²np 6, low reactivity).
d-Block
? Groups 3–12 ((n-1)d¹ ?¹ °ns ° ?²); transition metals, variable oxidation states, colored ions.
? Exception: Zn, Cd, Hg ((n-1)d 1 0ns²) not typical transition metals.
f-Block Elements
? Lanthanides (4f, Ce–Lu), actinides (5f, Th–Lr); inner transition, radioactive actinides.
Metals, Non-Metals, Metalloids
? Metals: Conductive, malleable, high melting/boiling points (left).
? Non-Metals: Poor conductors, brittle, low melting/boiling points (top-right).
? Metalloids: Intermediate properties, semiconductors (B, Si, Ge, As, Sb, Te, Po).
Periodic Trends in Physical Properties
Atomic Radius
? Decreases across period (? nuclear charge), increases down group (? shells).
? Transition metals: Slight ? (Sc–Mn), constant (Fe–Ni), slight ? (Cu–Zn).
? Lanthanide contraction: ? radius in 4f series.
Ionic Radius
? Cations: Smaller than parent (? e ?). Anions: Larger (? e ? repulsion).
? Isoelectronic species: Smaller with higher nuclear charge.
Ionization Enthalpy (IE)
? ? across period (? radius, ? charge), ? down group (? radius).
? Factors: Size, nuclear charge, penetration (s>p>d>f), shielding, half-filled orbitals.
Electron Gain Enthalpy (EGH)
? More negative across periods (except noble gases), less negative down group.
? Factors: Size, nuclear charge, shielding, half-filled orbitals.
Electronegativity
? ? across period, ? down group.
? Scales: Pauling (F=4), Mulliken, Allred-Rochow.
? Factors: Radius, nuclear charge, oxidation state, hybridization (sp > sp² > sp³).
Periodic Trends in Chemical Properties
Valence/Oxidation States
? Period: ? to 4, then ? to 0. Group: Constant valence; transition elements vary.
? Rule: Valence = e ? (=4) or 8–e ? (>4).
Anomalous Properties (Second Period)
? Li–F: Small size, high electronegativity, covalent compounds, diagonal relationships
(e.g., Li–Mg).
Chemical Reactivity
? High at period extremes: Left (lose e ?), right (gain e ?).
? Oxides: Basic (left, e.g., Na 2O), acidic (right, e.g., SO 3), amphoteric/neutral (center, e.g.,
Al 2O 3).
? Metallic character: ? across period, ? down group.
Periodic Trends Table
Property Across Period Down Group Examples
Atomic Radius ? (? nuclear
charge)
? (? shells) Na > Mg; Cs > Na
Ionic Radius ? (cations <
anions)
? (? shells) Na ? < Na; K ? >
Na ?
Ionization
Enthalpy
? (? radius) ? (? radius) Cl > Na; Na > K
Electron Gain
Enthalpy
More negative
(except noble
gases)
Less negative Cl: -349 kJ/mol;
Br: -324 kJ/mol
Electronegativity ? (? nuclear
charge)
? (? radius) F: 4.0; Cl: 3.0
Read More