In a chemical reaction, chemical equilibrium is the state in which both reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system.
State of Chemical Equilibrium
Those reactions which proceed in forward direction and reaches almost to completion are called Irreversible reactions.
For example:
Irreversible Reactions:
Those reactions which proceed in both forward and backward directions and never reaches completion are called Reversible reactions.
Examples:
But when Fe(s) is heated and water vapor is passed over it in an open vessel, it is converted to Fe3O4(s) along with the evolution of hydrogen gas.
And when Fe3O4 is reduced with hydrogen gas, it gives Fe(s) and H2O
But, if the reaction is carried out in closed vessel, this reaction becomes reversible.
Reversible reactions:
If we remove C (which is product), the reaction will again start and move in the forward direction to attain equilibrium again.
Equilibrium is a state in which the rate of the forward reaction equals the rate of the backward reaction. Although some chemical reactions reach completion, some other reactions do not completely occur.
This can be shown graphically.
So, “state of chemical equilibrium can be defined as the state when the rate of forward reaction becomes equal to the rate of reverse reaction and the concentration of all the species becomes constant”.
Guldberg and Waage in 1807 gave this law and according to this law, “At constant temperature, the rate at which a substance reacts is directly proportional to its active mass and the rate at which a chemical reaction proceeds is directly proportional to the product of active masses of the reacting species”.
The term active mass of a reacting species is the effective, concentration or its activity (a) which is related to the molar concentration (C) as
a = f C
where f = activity coefficient. F < 1 but f increases with dilution and as V → ∞ i.e. C → 0, f → 1 i.e., a → C Thus at very low concentration the active mass is essentially the same as the molar concentration. It is generally expressed by enclosing the formula of the reacting species in a square bracket.
To illustrate the law of mass action, consider the following general reaction at a constant temperature,
Applying law of mass action,
Rate of forward reaction,
Where kf = rate constant of forward reaction
Similarly,
Rate of reverse reaction
Where kr = rate constant of the reverse reaction.
At equilibrium,
Rate of forward reaction = Rate of reverse reaction
So, from equation (i) and (ii), we get
where, Kc is the equilibrium constant in terms of molar concentration.
Illustration:The rate of disappearance of A is given as
Calculate the value of the equilibrium constant.
Solution:
We know, at equilibrium concentration of each species present in the given equilibrium. Become constant.
Consider the same general reaction taking place at a constant temperature,
From the law of mass action,
From the ideal gas equation
PV = nRT
At constant temperature,
Thus, we can say in a mixture of gases, the Partial pressure of any component (say A)
P ∝[A]
Similarly, P ∝ [B]
So, equation (1) can be rewritten as
All Equilibrium constants (Keq)-
Kx and Kn are not considered equilibrium constants, because these can be varied without change in temperature for gases.
From the above, for the same general reaction at constant temperature.
And
From the ideal gas equation,
PV = nRT
So, PB = [B] RT; PD = [D]RT
Similarly, PA = [A]RT; PC = [C]RT
Substituting the values of PA, PB, PC, and PD in equation (2), we get
Where, Δn = (c + d) - (a + b)
i.e;, Δn = sum of no. of moles of gaseous products-sum of no. of moles of gaseous reactants.
Illustration: The value of Kp for the Reactionis 0.03 atm at 4270C, when the partial pressure is expressed in atm. What is the value of Kc.
Solution: Firstly, consider species that are present in gaseous phase only. So, we can write Kp.
Homogeneous Reactions:
Heterogeneous Reactions:
Products and reactants are in the same phase. Homogeneous gaseous equilibria are best classified into three categories i.e., in which no. of moles of product and reactant varies.
Case I: Homogeneous; Δng = 0
In this reaction, each and every species present are in same phase. That’s why this reaction is under the category of homogeneous equilibria.
PV = nRT (Ideal gas equation)
Here, V is constant. R is also constant.
P α n
Since no. of moles are constant i.e. Initial = a
Final = a
Hence PT also remains constant and we will get the curve mention below.
Case II: Homogeneous:Δng > 0
You will easily get these expressions in the same way we did in last.
Here, no. of moles increases at equilibrium i.e. from a to (a+x). Hence PT also increases and becomes constant at equilibrium as shown below.
Case III: Homogeneous and Δng < 0
This graph clearly resembles that first pressure decreases and then becomes constant at equilibrium.
Suppose ‘a’ moles of H2 and ‘b’ moles o f I2 are heated at 444°C in a closed container of volume ‘V’ litre and at equilibrium, 2x moles of HI are formed.
Initial concentration (mol L–1)
Equilibrium concentration (mol L–1)
Substituting the equilibrium concentrations of H2, I2 and HI in equation (i), we get
Suppose the total pressure of the equilibrium mixture at 444°C is P, then
PHI = mole fraction of HI × Total pressure
Similarly,
Substituting these values in equation (iii) we get
So, one can see from equations (iii) and (iv), that
Kp = Kc
This is so because Δn = 0 for the synthesis of HI from H2 and I2.
PCl5(g) dissociates thermally according to the reaction,
Let us consider that 1 mole of PCl5 has been taken in a container of volume V litre and at equilibrium x moles of PCl5(g) dissociates. Thus
Initial concentration (mo l L–1) 1 0 0 0
Equilibrium concentration (mol L–1)
According to law of mass action, at a constant temperature,
Substituting the values of equilibrium concentration, in equation (1), we have
Now, total number of moles at equilibrium = 1 – x + x + x = 1 + x
Mole fraction of PCl3 = Mole fraction
And mole fraction of PCl5
Suppose total pressure at equilibrium is P, then we have from equation (2),
Similarly, we can apply law of mass action on any reaction at equilibrium.
The equilibrium which involves reactants and products in different physical states. The law of mass action can also be applied on heterogenous equilibria as it was applied for homogenous equilibria (involving reactants and products in same physical states).
The thermal dissociat ion of NH4Cl(s) takes place in a closed container according to the equation
Let us consider 1 mole of NH4Cl(s) is kept in a closed container of volume ‘V’ litre at temperature TK and if x mole of NH4Cl dissociates at equilibrium then
Initial moles 1 0 0
Moles at equilibrium 1- x x x
Applying law of mass action, Kc
As NH4Cl is a pure solid, so there is no appreciable change in its concentration. Thus,
Kc = [NH3] [HCl]
And Kp =PNH3 * PHCl
Ag2CO3(s) dissociates thermally according to the equation.
Applying law of mass action, at constant temperature, we get,
Now, let us consider that 1 mole of Ag2CO3(s) is heated in a closed container of volume V and x mo l of Ag2CO3(s) dissociates at equilibrium, then
Initial moles 1 0 0
Equilibrium moles 1 - x x x
Now, as Ag2CO3 and Ag2O are solids, so their concentration can be assumed to be constants Thus
QC is called Reaction Quotient:
QC is the ratio of the concentration of products and reactants each raised to their schoitiometric coefficient as in balanced chemical equation.
Hence, three cases arises:
Note: While dealing wit h KP and α, take initial moles of reactant as 1 because ultimately they will be cancelled out.
If equilibrium constant (say KC) is very-very small.
(The concentration of product is very low and the concentration of reactant is very high) It clearly explains that the numerator is very small and denominator is very-very high.
Hence, by this we can infer that reaction has a very low approach in forward direction and reaction has just started.
If equilibrium constant (i.e. KC) is very-very high.
(Concentration of product is very high and concentration of reactant is very low).
Hence, it explains that reaction has almost completed.
Illustration:Initial mole of reactant is 1 mole and the volume of the container is 1L. Calculate the moles of B(g) at Equilibrium Kc = 10–50
Solution: Since the value of KC is very low.
x = 10–25
Illustration: If initially 1 mole of all the species present one taken in 10 L closed vessel, find the equilibrium concentration of each species.
Solution:
At any time concentration
Since QC> KC, so reaction will move in backward direct ion to attain equilibrium.
Equilibrium concentration
Equilibrium concentration of A(g) = 0.16
Equilibrium concentration of B(g) = 0.04
Equilibrium concentration of C(g) = 0.04
Illustration: Calculate KP for the reaction. When NO2 is 30% dissociated and total pressure at equilibrium is 2 bar.
Solution:
Given, α = 0.3
We are dealing with KP and α. Hence initial mole of N2O4 = 1
Partial Pressure
Put α = 0.3
KP = 0.79
In terms of moles
In terms of α
Industrial Chemistry: Chemical equilibrium principles are widely used in industrial processes to optimize reaction yields and product purity. Examples include the Haber-Bosch process for ammonia synthesis and the production of methanol and sulfuric acid.
Environmental Chemistry: Equilibrium concepts play a role in understanding environmental processes, such as the behavior of pollutants in air, water, and soil. Equilibrium calculations help assess factors like pH in natural waters and the equilibria involved in acid rain formation.
Chemical Analysis: Equilibrium-based methods are employed in analytical chemistry for quantitative analysis. Techniques like spectrophotometry and titration rely on equilibria between analytes and reagents to determine concentrations.
Pharmaceuticals: Drug formulations often involve equilibrium-based principles. For example, the solubility of a drug in a particular solvent can be crucial for drug delivery systems.
Biological Systems: Equilibrium concepts are relevant in biological systems, such as the binding of oxygen to hemoglobin in blood. Understanding the equilibrium between reactants and products is essential for comprehending biochemical reactions.
Corrosion Prevention: Equilibrium considerations are important in preventing corrosion. By controlling the conditions in which metals are exposed to moisture and oxygen, it is possible to establish conditions that hinder the corrosion process.
Food Chemistry: Equilibrium reactions are crucial in food chemistry, such as controlling the pH of food products and ensuring the stability of emulsions and suspensions.
Fertilizer Production: In the production of fertilizers, equilibrium principles are applied to optimize the synthesis of nutrients like ammonium nitrate.
84 videos|142 docs|67 tests
|
1. What is chemical equilibrium and how does it differ from irreversible reactions? | ![]() |
2. What is the Law of Mass Action and how is it applied in chemical equilibrium? | ![]() |
3. How do you calculate the equilibrium constant for homogeneous reversible reactions? | ![]() |
4. What is the significance of the magnitude of the equilibrium constant? | ![]() |
5. How can the direction of a reaction be predicted using the equilibrium constant? | ![]() |