Class 9 Exam  >  Class 9 Notes  >  Mathematics (Maths) Class 9  >  Short Notes: Circles

Circles Class 9 Notes Maths Chapter 10

What is a Circle?


  • Any closed shape with all points connected at equidistance from centre forms a Circle.
  • Any point which is at equidistance from anywhere from its boundary is known as the Centre of the Circle.
  • Radius is a Latin word which means ‘ray' but in the circle it is the line segment from the centre of the Circle to its edge. So any line starting or ending at the centre of the circle and joining anywhere on the border on the circle is known as the Radius of Circle.

Circles Class 9 Notes Maths Chapter 10

Interior and Exterior of a Circle

In a flat surface, the interior of a circle is the line whose distance from the centre is less than the radius. The exterior of a circle is the line in the plane whose distance from the centre is larger than the radius.
Circles Class 9 Notes Maths Chapter 10

Question for Short Notes: Circles
Try yourself:What is the definition of the radius of a circle?
View Solution


  • Chord: Any straight line segment that’s both endpoints falls on the boundary of the circle is known as Chord. In Latin, it means ‘bowstring’.
  • Diameter: Any straight line segment or Chord which passes through the centre of the Circle and its endpoints connects on the boundary of the Circle is known as the Diameter of Circle. So in a circle Diameter is the longest chord possible in a circle.
  • Arc: Any smooth curve joining two points is known as Arc. So in Circle, we can have two possible Arcs, the bigger one is known as Major Arc and the smaller one is known as Minor Arc.
  • Circumference: It is the length of the circle if we open and straightened out to make a line segment.

Circles Class 9 Notes Maths Chapter 10

Segment and Sector of the Circle

  • A segment of the circle is the region between either of its arcs and a chord. It could be a major or minor segment.
  • Sector of the circle is the area covered by an arc and two radii joining the centre of the circle. It could be the major or minor sector.

Circles Class 9 Notes Maths Chapter 10

Angle Subtended by a Chord at a Point

If in a circle AB is the chord and is making ∠ACB at any point of the circle then this is the angle subtended by the chord AB at a point C.
Circles Class 9 Notes Maths Chapter 10

Likewise, ∠AOB is the angle subtended by chord AB at point O i.e. at the centre and ∠ADB is also the angle subtended by AB at point D on the circle.

Theorem 1: Any two equal chords of a circle subtend equal angles at the centre.
Circles Class 9 Notes Maths Chapter 10

Here in the circle, the two chords are given and PQ = RS with centre O.

So OP = OS = OQ = OR (all are radii of the circle)
∆POQ ≅ ∆SOR
∠POQ = ∠SOR  
This shows that the angles subtended by equal chords to the centre are also equal.

Theorem 2: If the angles made by the chords of a circle at the centre are equal, then the chords must be equal.

Theorem 2 is the reverse of the Theorem 1.

Question for Short Notes: Circles
Try yourself:What is the relationship between two equal chords of a circle and the angles they subtend at the center?
View Solution

Perpendicular from the Centre to a Chord

Theorem 3: If we draw a perpendicular from the centre of a circle to any chord then it bisects the chord.
Circles Class 9 Notes Maths Chapter 10

If we draw a perpendicular from the centre to the chord of the circle then it will bisect the chord. And the bisector will make 90° angle to the chord.

Theorem 4: The line which is drawn from the centre of a circle to bisect a chord must be perpendicular to the chord.

If we draw a line OB from the centre of the circle O to the midpoint of the chord AC i.e. B, then OB is the perpendicular to the chord AB.
Circles Class 9 Notes Maths Chapter 10

If we join OA and OC, then

In ∆OBA and ∆OBC,
AB = BC (B is the midpoint of AC)
OA = OC (Both are the radii of the same circle)
OB = OB (same side)
Hence, ΔOBA ≅ ΔOBC (both are congruent by SSS congruence rule)
⇒ ∠OBA = ∠OBC (respective angles of congruent triangles)
∠OBA + ∠OBC = ∠ABC = 180° [Linear pair]
∠OBC + ∠OBC = 180° [Since ∠OBA = ∠OBC]
2 x ∠OBC = 180°
∠OBC = 90o
∠OBC = ∠OBA = 90°
∴ OB ⊥ AC

Circle through Three Points

Theorem 5: There is one and only one circle passing through three given non-collinear points.

Circles Class 9 Notes Maths Chapter 10

In this figure, we have three non-collinear points A, B and C. Let us join AB and BC and then make the perpendicular bisector of both so that RS and PQ the perpendicular bisector of AB and BC respectively meet each other at Point O.
Now take the O as centre and OA as the radius draw the circle which passes through the three points A, B and C.
This circle is known as Circumcircle. Its centre and radius are known as the Circumcenter and Circumradius.

Equal Chords and Their Distances from the Centre

Theorem 6: Two equal chords of a circle are at equal distance from the centre.
Circles Class 9 Notes Maths Chapter 10

AB and CD are the two equal chords in the circle. If we draw the perpendicular bisector of these chords then the line segment from the centre to the chord is the distance of the chord from the centre.
If the chords are of equal size then their distance from the centre will also be equal.

Theorem 7: Chords at equal distance from the centre of a circle are also equal in length. This is the reverse of the above theorem which says that if the distance between the centre and the chords are equal then they must be of equal length.

Angle Subtended by an Arc of a Circle

The angle made by two different equal arcs to the centre of the circle will also be equal.
Circles Class 9 Notes Maths Chapter 10

There are two arcs in the circle AB and CD which are equal in length.
So ∠AOB = ∠COD.

Theorem 8: The angle subtended by an arc at the centre is twice the angle subtended by the same arc at some other point on the remaining part of the circle.
Circles Class 9 Notes Maths Chapter 10

In the above figure ∠POQ = 2∠PRQ.

Question for Short Notes: Circles
Try yourself:What can be concluded about two equal chords in a circle and their distances from the center?
View Solution

Theorem 9: Angles from a common chord which are on the same segment of a circle are always equal.
Circles Class 9 Notes Maths Chapter 10

If there are two angles subtended from a chord to any point on the circle which are on the same segment of the circle then they will be equal.
∠a = (1/2) ∠c (By theorem 8)
∠b = (1/2) ∠c
∠a = ∠b

Cyclic Quadrilaterals

If all the vertex of the quadrilateral comes on a circle then it is said to be a cyclic quadrilateral.
Circles Class 9 Notes Maths Chapter 10

Theorem 10: Any pair of opposite angles of a cyclic quadrilateral has the sum of 180º.
∠A + ∠B + ∠C + ∠D = 360º (angle sum property of a quadrilateral)
∠A + ∠C = 180°
∠B + ∠D = 180º

Theorem 11: If the pair of opposite angles of a quadrilateral has sum of 180º, then the quadrilateral will be cyclic.

Theorem 11 is the reverse of the theorem 10.

The document Circles Class 9 Notes Maths Chapter 10 is a part of the Class 9 Course Mathematics (Maths) Class 9.
All you need of Class 9 at this link: Class 9
44 videos|412 docs|54 tests

Top Courses for Class 9

44 videos|412 docs|54 tests
Download as PDF
Explore Courses for Class 9 exam

Top Courses for Class 9

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

Free

,

video lectures

,

ppt

,

Sample Paper

,

practice quizzes

,

Important questions

,

Circles Class 9 Notes Maths Chapter 10

,

Circles Class 9 Notes Maths Chapter 10

,

shortcuts and tricks

,

Extra Questions

,

past year papers

,

Semester Notes

,

study material

,

Previous Year Questions with Solutions

,

Circles Class 9 Notes Maths Chapter 10

,

Objective type Questions

,

Viva Questions

,

Summary

,

mock tests for examination

,

MCQs

,

Exam

;