Class 8 Exam  >  Class 8 Notes  >  Mathematics (Maths) Class 8  >  Important Questions: Algebraic Expressions and Identities

Class 8 Maths Chapter 8 Important Question Answers - Algebraic Expressions and Identities

Q1: Classify the following polynomials as monomials, binomials, and trinomials. Also, state the  polynomials do not fall in any of these three categories?
x + y, 1000, x + x² + x³, 7 + y + 5x, 2y – 3y², 2y – 3y² + 4y³, 5x – 4y + 3xy, 4z – 15z², ab + bc + cd + da, pqr, p²q + pq², 2p + 2q, 
Sol: The classified terms are given below,
Monomials- 1000, pqr
Binomials- x + y, 2y – 3y², 4z – 15z², p²q + pq², 2p + 2q
Trinomials- x + x²+ x³, 7 + y + 5x, 2y – 3y² + 4y³, 5x – 4y + 3xy
Polynomials that do not fall in any of these categories are  ab + bc + cd + da

Q2: Subtract the following.
(i) 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3
(ii 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz
(iii) 4p²q – 3pq + 5pq²– 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2+ 5p²q
Sol:
(i) ( 12a – 9ab + 5b – 3 ) – ( 4a – 7ab + 3b + 12 )
= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12
= 12a – 4a – 9ab + 7ab + 5b –3b – 3 – 12
= 8a – 2ab + 2b – 15
(ii) ( 5xy – 2yz – 2zx + 10xyz ) – ( 3xy + 5yz – 7zx )                        
= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx                         
= 5xy – 3xy – 2yz – 5yz – 2zx + 7zx + 10xyz                        
= 2xy – 7yz + 5zx + 10xyz
(iii) ( 18 – 3p – 11q + 5pq – 2pq2+ 5p²q ) – ( 4p²q – 3pq + 5pq²– 8p + 7q – 10 )                         
= 18 – 3p – 11q + 5pq – 2pq2 + 5p²q – 4p²q + 3pq – 5pq² + 8p – 7q + 10                         
= 18 + 10 – 3p + 8p – 11q – 7q + 5pq + 3pq – 2pq2 – 5pq² + 5p²q – 4p²q                           
= 28 + 5p – 18q + 8pq – 7pq² + p²q

Q3: Which term is the like term similar to 24a²bc?
(a) 13 × 8a × 2b × c × a 
(b) 8 × 3 × a × b × c
(c) 3 × 8 × a × b × c × c 
(d) 3 × 8 × a × b × b × c
Ans: (a)
Sol: To find out the similar term as 24a²bc, let us find the product of each of the equations,

  1. 13 × 8a × 2b × c × a =  208a²bc
  2. 8 × 3 × a × b × c = 24abc
  3. 3 × 8 × a × b × c × c = 24abc²
  4. 3 × 8 × a × b × b × c = 24ab²c

Hence, we can get that option (a) is correct.

Q4. Fill in the blanks.
(a) (x + a) (x + b) = x² + (a + b)x + ________.
(b) The product of two terms with like signs is a  ________ term.
(c) The product of two terms with unlike signs is a  ________ term.
(d) (a – b) _________ = a² – 2ab + b²
(e)  a² – b² = (a + b ) __________.
(f) (a – b)² + ____________ = a² – b²
(g) (a + b)² – 2ab = ___________ + ____________
(h) The product of two polynomials is a ________
(i) The coefficient in – 37abc is __________. 
(j) Number of terms in the expression a2 + bc × d is ________
Ans: 
(a) ab
As per the standard identity 4, (x + a) (x + b) =  x² + (a + b)x + ab
(b) Positive
(c) Negative
(d) ( a – b)²
As per standard identity 2, (a – b)² = a² – 2ab + b²
(e) (a – b)
As per standard identity 3, (a + b ) ( a – b ) = a² – b²
(f) 2ab – 2b²
Let us solve the equation with x in the blank space. As per identity 2, (a – b)² = a² – 2ab + b². 
Hence, a² – 2ab + b² + x = a² – b²
x = a² – b² – a² + 2ab – b²
x = 2ab – 2b²  
(g) a² + b²
Using Identity 1 ( a + b )² = a² + 2ab + b²,
(a + b)² – 2ab = a² + 2ab + b² – 2ab = a² + b²
(h) Polynomial
(i) -37
(j) 2

Q5: The length of a rectangular box is  ( x + 9y) and the area is x² + 12xy + 27y². Find the breadth.
Sol.  Area of a rectangle =  length x breadth, hence breadth = area / length.
breadth = x² + 12xy + 27y²
( x + 9y )
 x² + 9xy + 3xy + 27y²
( x + 9y )
=  x ( x + 9y ) + 3y (x + 9y)
( x + 9y )
breadth   =  x + 3y

Q6. The exponents of the variables in a polynomial are always
(a) Integers 
(b) Positive integers 
(c) Non-negative integers 
(d) Non-positive integers

Ans: (c)
A polynomial will have a non-zero coefficient and variables having non-negative integers as exponents. For example : a + b + r + q, 3ab, 5xyz – 10, 2a + 3b + 7z, etc.

Q7. Using identities, find products for the below.
(a) 71²
(b) 99²
(c) 102²
(d) 998²
(e) 5.2²
(f) 297 × 303
(g) 78 × 82 
(h) 8.9²
(i) 10.5 × 9.5
Sol: 

(a) 71² =  ( 70 + 1 )²                                      Identity applied ( a + b )² = a² + 2ab + b²
= 70² + 2 ( 70 x 1 ) + 1²
= 4900 + 140 + 1
= 5041

(b) 99² = ( 100 – 1 )²                                       Identity applied ( a – b )² = a² – 2ab + b² 
= 100² – 2 ( 100 x 1 ) + 1² 
= 10000 – 200 + 1
= 9801
(c) 102² = ( 100 + 2 )²                                      Identity applied ( a + b )² = a² + 2ab + b²
= 100² + 2 ( 100 x 2 ) + 2²
= 10000 + 400 + 4
= 10404      
(d) 998² = ( 1000 – 2 )²                                      Identity applied ( a – b )² = a² – 2ab + b² 
= 1000² – 2 ( 1000 x 2 ) + 2²
= 1000000 – 4000 + 4
= 996004
(e) 5.2² = ( 5 + 0.2 )²                                           Identity applied ( a + b )² = a² + 2ab + b²
= 5² + 2 ( 5 x 0.2 ) + 0.2²
= 25 + 2 +  0.04
= 27.04
(f) 297 × 303 = ( 300 – 3 ) ( 300 + 3 )                 Identity applied  ( a + b ) ( a – b ) = a² – b²
= 300² – 3²
= 90000 – 9
= 89991
(g) 78 × 82 = ( 80 – 2 ) ( 80 + 2 )                         Identity applied ( a + b ) ( a – b ) = a² – b²
=  80² – 2²
= 6400 – 4
= 6396     
(h) 8.9² = ( 9.0 – 0.1 )²                                           Identity applied ( a – b )² = a² – 2ab + b²
= 9.0² – 2 ( 9.0 x 0.1 ) + 0.1²
= 81 – 1.8 + 0.01
=  79.21
(i) 10.5 x 9.5 = ( 10 + 0.5 ) ( 10 – 0.5 )                 Identity applied ( a + b ) ( a – b ) = a² – b²
=  10² – 0.5²
= 100 – 0.25
= 99.75

Q8: Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(a) 5a, 3a², 7a4
(b) 2p, 4q, 8r
(c) xy, 2x²y, 2xy²
(d) a, 2b, 3c
Sol: The volume of a rectangular box is the product of its length, breadth and height, i.e Volume = length x breadth x height.
Volumes are calculated as below,
(a) length = 5a, breadth = 3a², height = 7a4
Volume = 5a x 3a² x 7a4
= 105a7
(b) length = 2p, breadth = 4q, height = 8r
Volume = 2p x 4q x 8
= 64pqr
(c) length = xy, breadth = 2x²y, height = 2xy²
Volume = xy x 2x²y x 2xy²
= 4x4y4
(d) length = a, breadth = 2b, height = 3c
Volume = a x 2b x 3c
= 6abc

Q9: Show that LHS = RHS for the below equations.
(a) ( 3x + 7 )² – 84x = ( 3x – 7 )²
(b) ( 9p – 5q )² + 180pq = ( 9p + 5q )²
(c) ( 4pq + 3q )² – ( 4pq – 3q )² = 48pq²
(d) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
Answer 18. 
(a) LHS =  ( 3x + 7 )² – 84x 
= (3x)² + 2 ( 3x x 7 ) + 7² – 84x
=  9x² + 42x + 49 – 84x
= 9x² – 42x + 49
RHS = ( 3x – 7 )² 
= (3x)² – 2 ( 3x x 7 ) + 7² 
= 9x² – 42x + 49
Hence LHS = RHS
(b) LHS = ( 9p – 5q )² + 180pq 
= (9p)² – 2 ( 9p x 5q ) + (5q)² + 180pq
= 81p² + 90pq + 25q²
RHS = ( 9p + 5q )²
= (9p)² + 2 ( 9p x 5q ) + (5q)²
= 81p² + 90pq + 25q²
Hence LHS = RHS

(c) LHS = ( 4pq + 3q )² – ( 4pq – 3q )²
= (4pq)² + 2 ( 4pq x 3q ) + (3q)² – ( (4pq)² – 2 ( 4pq x 3q ) + (3q)²)
= 16p²q² + 24pq² + 9q² – 16p²q² + 24pq² – 9q²
= 48pq²
RHS = 48pq²
Hence LHS = RHS
(d) LHS =  (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a)
= a² + ab – ba – b² + b² + bc – cb – c² + c² + ca – ac – a²
= 0
RHS = 0
Hence LHS = RHS

Q10: Show that LHS = RHS for the below equations.
(a) ( 3x + 7 )² – 84x = ( 3x – 7 )²
(b) ( 9p – 5q )² + 180pq = ( 9p + 5q )²
(c) ( 4pq + 3q )² – ( 4pq – 3q )² = 48pq²
(d) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
Sol. 
(a) LHS =  ( 3x + 7 )² – 84x 
= (3x)² + 2 ( 3x x 7 ) + 7² – 84x
=  9x² + 42x + 49 – 84x
= 9x² – 42x + 49
RHS = ( 3x – 7 )² 
= (3x)² – 2 ( 3x x 7 ) + 7² 
= 9x² – 42x + 49
Hence LHS = RHS
(b) LHS = ( 9p – 5q )² + 180pq 
= (9p)² – 2 ( 9p x 5q ) + (5q)² + 180pq
= 81p² + 90pq + 25q²
RHS = ( 9p + 5q )²
= (9p)² + 2 ( 9p x 5q ) + (5q)²
= 81p² + 90pq + 25q²
Hence LHS = RHS
(c) LHS = ( 4pq + 3q )² – ( 4pq – 3q )²
= (4pq)² + 2 ( 4pq x 3q ) + (3q)² – ( (4pq)² – 2 ( 4pq x 3q ) + (3q)²)
= 16p²q² + 24pq² + 9q² – 16p²q² + 24pq² – 9q²
= 48pq²
RHS = 48pq²
Hence LHS = RHS

(d) LHS =  (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a)
= a² + ab – ba – b² + b² + bc – cb – c² + c² + ca – ac – a²
= 0
RHS = 0
Hence LHS = RHS

Q11. Select the correct option of volume of a rectangular box  with length = 2ab, breadth = 3ac and height = 2ac 
(a) 12a³bc² 
(b) 12a³bc
(c) 12a²bc
(d) 2ab +3ac + 2ac
Ans: (a)
The formula for calculating the volume of a rectangular box is 
Volume = length x breadth x height 
With the length of the input = 2ab, breadth = 3ac and height = 2ac 
Volume = 2ab x 3ac x 2ac
= 12a³bc²

Q12: The product of a binomial and monomial is a 
(a) Monomial 
(b) Binomial 
(c) Trinomial 
(d) None of these
Ans: (b)
Explanation: This can be demonstrated through an example  below,
x ( y + z ) = xy + xz 
This expression contains two terms, x is a monomial and ( y + z ) is a binomial.
The product of multiplying these terms results in a binomial product xy + xz.

Q13. Which of the following is an identity? 
(a) (p + q)²  = p² + q² 
(b) p² – q² = (p – q)² 
(c) p² – q² = p² + 2pq – q² 
(d) (p + q)² = p² + 2pq + q²
Ans: (d) 
The equation  (p + q)² = p² + 2pq + q² follows the first standard algebraic identity
( a + b )² = a² + 2ab + b². The rest of the other options do not follow any of the standard identities. Hence option (d) is correct.

Q14: Add the following.
(i) ab – bc, bc – ca, ca – ab
(ii) a – b + ab, b – c + bc, c – a + ac
(iii) 2p²q² – 3pq + 4, 5 + 7pq – 3p²q²
(iv) l² + m², m² + n², n² + l², 2lm + 2mn + 2nl
Sol: 
(i) (ab – bc) + (bc – ca) + (ca – ab)         
= ab – bc + bc – ca + ca – ab
= ab-ab-bc+bc-ca+ca
= 0
(ii) (a – b + ab) + (b – c + bc) + (c – a + ac)
= a – b + ab + b – c + bc + c -a +ac
= a – a -b + b + ab – c + c + bc + ac
= ab + bc + ac
(iii) ( 2p²q² – 3pq + 4) + ( 5 + 7pq – 3p²q²)
= 2p²q² – 3pq + 4 + 5 + 7pq – 3p²q²
= 2p²q² – 3p²q² + 7pq – 3pq + 4 + 5
= -1p²q² + 4pq + 9
= 4pq + 9 – p²q²
(iv) ( l² + m²) + (m² + n²) + (n² + l²) + (2lm + 2mn + 2nl)
= l² + m² + m² + n² + n² + l² + 2lm + 2mn + 2nl
= l² +  l² + m² + m² + n² + n² + 2lm + 2mn + 2nl
= 2l² + 2m² + 2n² + 2lm + 2mn + 2nl
= 2( l² + m² + n² + lm + mn + nl)   

Q15: Solve the below using correct identities.
(a) (48)²
(b) 181² – 19²
(c) 497 × 505
(d) 2.07 × 1.93
Sol:
(a) (48)²
= (50 – 2)²
As (a – b)² = a² – 2ab + b² , hence
(50 – 2)² = (50)² – 2 × 50 × 2 + (2)²
= 2500 – 200 + 4
= 2300 + 4
= 2304
(b) As a² – b² = (a – b) (a + b)
181² – 19² = (181 – 19) (181 + 19)
= 162 × 200
= 32400

(c) By using the identity (x + a) (x + b) = x2 + (a + b) x + ab
497 x 505 = ( 500 – 3 ) (500 + 5 )
= 500² + (–3 + 5) × 500 + (–3) (5) 
= 250000 + 1000 – 15 
= 250985
(d) As (a + b) (a – b) = a² – b² 
2.07 × 1.93 = (2 + 0.07) (2 – 0.07)
= 2² – 0.07²
= 3.9951

The document Class 8 Maths Chapter 8 Important Question Answers - Algebraic Expressions and Identities is a part of the Class 8 Course Mathematics (Maths) Class 8.
All you need of Class 8 at this link: Class 8
Are you preparing for Class 8 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 8 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
81 videos|413 docs|31 tests

Up next

FAQs on Class 8 Maths Chapter 8 Important Question Answers - Algebraic Expressions and Identities

1. What are algebraic expressions and how are they different from numerical expressions?
Ans.Algebraic expressions are mathematical phrases that include variables, numbers, and operations. Unlike numerical expressions, which only consist of numbers and operations (like addition or multiplication), algebraic expressions contain at least one variable. For example, \(2x + 3\) is an algebraic expression, while \(2 + 3\) is a numerical expression.
2. What are some common algebraic identities that students should know?
Ans.Some common algebraic identities include: 1. \((a + b)^2 = a^2 + 2ab + b^2\) 2. \((a - b)^2 = a^2 - 2ab + b^2\) 3. \(a^2 - b^2 = (a + b)(a - b)\) These identities are useful for simplifying algebraic expressions and solving equations.
3. How can algebraic identities be applied to simplify expressions?
Ans.Algebraic identities can be applied to simplify expressions by substituting parts of the expression with their equivalent forms based on the identity. For instance, if you need to simplify \( (x + 5)^2 \), you can use the identity \( (a + b)^2 \) to rewrite it as \( x^2 + 10x + 25 \).
4. What is the significance of factoring in algebraic expressions?
Ans.Factoring is significant because it allows us to break down complex expressions into simpler components, making them easier to solve or analyze. For example, factoring \( x^2 - 9 \) into \( (x + 3)(x - 3) \) can help solve equations or simplify further calculations.
5. How do you evaluate an algebraic expression for a given value of the variable?
Ans.To evaluate an algebraic expression for a given value of the variable, substitute the value into the expression and perform the arithmetic operations. For example, to evaluate \( 3x + 4 \) for \( x = 2 \), substitute 2 for \( x \): \( 3(2) + 4 = 6 + 4 = 10 \).
81 videos|413 docs|31 tests
Download as PDF

Up next

Explore Courses for Class 8 exam
Related Searches

past year papers

,

Sample Paper

,

study material

,

Class 8 Maths Chapter 8 Important Question Answers - Algebraic Expressions and Identities

,

Objective type Questions

,

MCQs

,

ppt

,

Free

,

Previous Year Questions with Solutions

,

video lectures

,

pdf

,

shortcuts and tricks

,

Semester Notes

,

Extra Questions

,

Viva Questions

,

Summary

,

practice quizzes

,

Class 8 Maths Chapter 8 Important Question Answers - Algebraic Expressions and Identities

,

mock tests for examination

,

Important questions

,

Exam

,

Class 8 Maths Chapter 8 Important Question Answers - Algebraic Expressions and Identities

;