Agricultural Engineering Exam  >  Agricultural Engineering Notes  >  Soil Mechanics Notes- Agricultural Engineering  >  Cohesionless & Cohesive Soils - Slope Stability, Soil Mechanics

Cohesionless & Cohesive Soils - Slope Stability, Soil Mechanics | Soil Mechanics Notes- Agricultural Engineering PDF Download

Cohesionless Soil

For cohesionless soil, the shear strength can be written as:

\[{\tau _f}={\sigma _n}\tan \phi '=\gamma \,z{\cos ^2}\beta \tan \phi '\]                        (28.4)

where tf is the failure shear strength and ø' is the angle of shearing resistance or angle of internal friction.

Thus, factor safety (F) can be written as:

\[F={{Shear\;Strength} \over {Shear\;Stress}}={{\gamma \,z{{\cos }^2}\beta \tan \phi } \over {\gamma \,z\cos \beta \sin \beta }}={{\tan \phi '} \over {\tan \beta }}\]                             (28.5)

Figure 28.3 shows the effective forces acting on an element in the infinite slope. The position of water table is also shown in the figure. The effective normal stress can be written as:

\[{\sigma '_n}={{(W-{\gamma _w}hb\cos\beta )\cos\beta}\over b}=(\gamma\,z\cos\beta-{\gamma _w}h\cos\beta)\cos\beta\]

\[=(\gamma \,z - {\gamma _w}h){\cos ^2}\beta\]                            (28.6)

\[\tau={{W\sin \beta } \over b}=\gamma \,z\cos \beta \sin \beta\]                (28.7)

where Yw is the unit weight of water.

\[F={{Shear\;Strength}\over{Shear\;Stress}}={{{{\sigma '}_n}\tan \phi}\over\tau }={{(\gamma \,z - {\gamma _w}h){{\cos }^2}\beta\tan\phi}\over{\gamma \,z\cos \beta \sin \beta }}=\left({1 - {{{\gamma _w}h}\over {\gamma \,z}}} \right){{\tan\phi '}\over{\tan\beta}}\]               (28.8)

If water table is at the top i.e z=h then,

\[F=\left({1 - {{{\gamma _w}} \over \gamma }} \right){{\tan \phi '}\over{\tan \beta }}\]                   (28.9)

Cohesionless & Cohesive Soils - Slope Stability, Soil Mechanics | Soil Mechanics Notes- Agricultural Engineering

Fig. 28.3. . Effective forces acting on an element in the infinite slope.

 

Cohesive Soil

In case of c-ø soil, the shear strength can be written as:

\[{\tau _f}=c' + {\sigma _n}\tan \phi '=c' + \gamma \,z{\cos ^2}\beta \tan \phi '\]                                       (28.10)

\[F=={{c' + \gamma \,z{{\cos }^2}\beta \tan \phi '} \over {\gamma z\cos \beta \sin \beta }}\]                   (28.11)

For F = 1, the depth z is called as critical depth (hc). Thus, putting F=1 and z=hc in Eq. (28.11), one can get

\[{h_c}={{c'} \over {\gamma (\tan \beta-\tan \phi '){{\cos }^2}\beta }}\]                                                  (28.12)

For seepage parallel to the slope,

\[F={{c' + (\gamma z - {\gamma _w}h){{\cos }^2}\beta \tan \phi'}\over{\gamma z\cos\beta\sin\beta }}\]     (28.13)

\[{h_c} = \frac{{c'}}{{\gamma (\tan\beta-\frac{{{\gamma _w}}}{\gamma}\tan\varphi '){{\cos}^2}\beta}}\]      (28.14)

The stability number (Sn) can be written as:

\[{S_n}={{c'} \over {\gamma {h_c}}}=(\tan \beta-\tan \phi '){\cos ^2}\beta\]  

The document Cohesionless & Cohesive Soils - Slope Stability, Soil Mechanics | Soil Mechanics Notes- Agricultural Engineering is a part of the Agricultural Engineering Course Soil Mechanics Notes- Agricultural Engineering.
All you need of Agricultural Engineering at this link: Agricultural Engineering
64 docs
Explore Courses for Agricultural Engineering exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Soil Mechanics | Soil Mechanics Notes- Agricultural Engineering

,

Important questions

,

Summary

,

past year papers

,

mock tests for examination

,

Sample Paper

,

Extra Questions

,

Free

,

Soil Mechanics | Soil Mechanics Notes- Agricultural Engineering

,

Objective type Questions

,

study material

,

Cohesionless & Cohesive Soils - Slope Stability

,

video lectures

,

Exam

,

Cohesionless & Cohesive Soils - Slope Stability

,

MCQs

,

Cohesionless & Cohesive Soils - Slope Stability

,

practice quizzes

,

Semester Notes

,

pdf

,

Soil Mechanics | Soil Mechanics Notes- Agricultural Engineering

,

Viva Questions

,

Previous Year Questions with Solutions

,

shortcuts and tricks

,

ppt

;