JEE Exam  >  JEE Notes  >  DPP: Daily Practice Problems for JEE Main & Advanced  >  DPP for JEE: Daily Practice Problems- Mathematical Reasoning

Mathematical Reasoning Practice Questions - DPP for JEE

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


1. Let p, q and r be any three logical statements. Which one of the
following is true?
(a) 
(b)
(c)
(d)
2. ~(p ? q)? [(~p) ? (~ q)] is
(a) a tautology
(b) a contradiction
(c) neither a tautology nor contradicion
(d) cannot come any conclusion.
3. For integers m and n, both greater than 1, consider the following three
statements :
P : m divides n
Q : m divides n
2
R : m is prime,
then
(a)
Page 2


1. Let p, q and r be any three logical statements. Which one of the
following is true?
(a) 
(b)
(c)
(d)
2. ~(p ? q)? [(~p) ? (~ q)] is
(a) a tautology
(b) a contradiction
(c) neither a tautology nor contradicion
(d) cannot come any conclusion.
3. For integers m and n, both greater than 1, consider the following three
statements :
P : m divides n
Q : m divides n
2
R : m is prime,
then
(a)
(b)
(c)
(d)
4. If is false and q and r are both false, then p is
(a) True
(b) False
(c) May be true or false
(d) Data sufficient
5. Consider the following statements
p : x, y ? Z such that x and y are odd.
q : xy is odd. Then,
(a) p ? q is true
(b) is true
(c) Both (a) and (b)
(d) None of these
6. If S*(p, q, r) is the dual of the compound statement S(p,q,r) and S
(p,q,r) = ~ p ? [~ (q ? r)] then S*(~p, ~q, ~r) is equivalent to –
(a) S (p, q, r)
(b) ~ S (~p, ~q, ~r)
(c) ~ S (p, q, r)
(d) S*(p, q, r)
7. The dual of statement (p ? q) ? ~ q p? ~ q is
(a) (p ? q) ? ~ q p ? ~ q
(b) (p ? q) ? ~ q p ? ~ q
(c) (p ? q) ? ~ q p ? ~ q
(d) (p ? q) ? ~ q p ? ~ q.
8. The converse of the statement if x< y then x
2
 < y
2
 is
(a) If x is not less then y then x
2
 is not less than y
2
(b) If x
2 
< y
2 
then x < y
(c) If x
2 
= y
2 
then x = y
Page 3


1. Let p, q and r be any three logical statements. Which one of the
following is true?
(a) 
(b)
(c)
(d)
2. ~(p ? q)? [(~p) ? (~ q)] is
(a) a tautology
(b) a contradiction
(c) neither a tautology nor contradicion
(d) cannot come any conclusion.
3. For integers m and n, both greater than 1, consider the following three
statements :
P : m divides n
Q : m divides n
2
R : m is prime,
then
(a)
(b)
(c)
(d)
4. If is false and q and r are both false, then p is
(a) True
(b) False
(c) May be true or false
(d) Data sufficient
5. Consider the following statements
p : x, y ? Z such that x and y are odd.
q : xy is odd. Then,
(a) p ? q is true
(b) is true
(c) Both (a) and (b)
(d) None of these
6. If S*(p, q, r) is the dual of the compound statement S(p,q,r) and S
(p,q,r) = ~ p ? [~ (q ? r)] then S*(~p, ~q, ~r) is equivalent to –
(a) S (p, q, r)
(b) ~ S (~p, ~q, ~r)
(c) ~ S (p, q, r)
(d) S*(p, q, r)
7. The dual of statement (p ? q) ? ~ q p? ~ q is
(a) (p ? q) ? ~ q p ? ~ q
(b) (p ? q) ? ~ q p ? ~ q
(c) (p ? q) ? ~ q p ? ~ q
(d) (p ? q) ? ~ q p ? ~ q.
8. The converse of the statement if x< y then x
2
 < y
2
 is
(a) If x is not less then y then x
2
 is not less than y
2
(b) If x
2 
< y
2 
then x < y
(c) If x
2 
= y
2 
then x = y
(d) None of these
9. If p and q are true statement and r, s are false statements, then the truth
value of  ~ [(p?~r) ? ( ~q ? s)] is
(a) true
(b) false
(c) false if p is true
(d) None of these
10. Identify the false statement
(a) ~ [p ? (~ q)] = (~ p) ? q
(b) [p ? q] ? (~ p) is a tautology
(c) [p ? q) ?  (~ p) is a contradiction
(d) ~ [p ? q] = (~ p) ? (~ q)
11. The contrapositive of p ? (~q ? ~r) is –
(a) (~ q ? r) ? ~ p
(b) (q ? r) ? ~p
(c) (q ? ~r) ? ~ p
(d) None of these
12. Which of the following is wrong ?
(a) p ? q is logically equivalent to ~ p ? q
(b) If the truth values of p, q, r are T, F, T respectively, then the truth value
of (p ? q) ? (q ? r) is T
(c) ~ (p ? q ? r)  ~ p ? ~ q ? ~ r
(d) The truth value of p ? ~ (p ? q) is always T.
13. The false statement of the following is
(a) is a contradiction
(b) is a contradiction
(c) is a tautology
(d) p is a tautology
14. In the truth table for the statement ( ~ p ? ~ q) ? ( ~ q ? ~ p),  the last
Page 4


1. Let p, q and r be any three logical statements. Which one of the
following is true?
(a) 
(b)
(c)
(d)
2. ~(p ? q)? [(~p) ? (~ q)] is
(a) a tautology
(b) a contradiction
(c) neither a tautology nor contradicion
(d) cannot come any conclusion.
3. For integers m and n, both greater than 1, consider the following three
statements :
P : m divides n
Q : m divides n
2
R : m is prime,
then
(a)
(b)
(c)
(d)
4. If is false and q and r are both false, then p is
(a) True
(b) False
(c) May be true or false
(d) Data sufficient
5. Consider the following statements
p : x, y ? Z such that x and y are odd.
q : xy is odd. Then,
(a) p ? q is true
(b) is true
(c) Both (a) and (b)
(d) None of these
6. If S*(p, q, r) is the dual of the compound statement S(p,q,r) and S
(p,q,r) = ~ p ? [~ (q ? r)] then S*(~p, ~q, ~r) is equivalent to –
(a) S (p, q, r)
(b) ~ S (~p, ~q, ~r)
(c) ~ S (p, q, r)
(d) S*(p, q, r)
7. The dual of statement (p ? q) ? ~ q p? ~ q is
(a) (p ? q) ? ~ q p ? ~ q
(b) (p ? q) ? ~ q p ? ~ q
(c) (p ? q) ? ~ q p ? ~ q
(d) (p ? q) ? ~ q p ? ~ q.
8. The converse of the statement if x< y then x
2
 < y
2
 is
(a) If x is not less then y then x
2
 is not less than y
2
(b) If x
2 
< y
2 
then x < y
(c) If x
2 
= y
2 
then x = y
(d) None of these
9. If p and q are true statement and r, s are false statements, then the truth
value of  ~ [(p?~r) ? ( ~q ? s)] is
(a) true
(b) false
(c) false if p is true
(d) None of these
10. Identify the false statement
(a) ~ [p ? (~ q)] = (~ p) ? q
(b) [p ? q] ? (~ p) is a tautology
(c) [p ? q) ?  (~ p) is a contradiction
(d) ~ [p ? q] = (~ p) ? (~ q)
11. The contrapositive of p ? (~q ? ~r) is –
(a) (~ q ? r) ? ~ p
(b) (q ? r) ? ~p
(c) (q ? ~r) ? ~ p
(d) None of these
12. Which of the following is wrong ?
(a) p ? q is logically equivalent to ~ p ? q
(b) If the truth values of p, q, r are T, F, T respectively, then the truth value
of (p ? q) ? (q ? r) is T
(c) ~ (p ? q ? r)  ~ p ? ~ q ? ~ r
(d) The truth value of p ? ~ (p ? q) is always T.
13. The false statement of the following is
(a) is a contradiction
(b) is a contradiction
(c) is a tautology
(d) p is a tautology
14. In the truth table for the statement ( ~ p ? ~ q) ? ( ~ q ? ~ p),  the last
column has the truth value in the following order is
(a) TTTF
(b) FTTF
(c) TFFT
(d) TTTT
15. If p is any statement, t is tautology and c is a contradiction, then which
of the following is not correct?
(a) p? (~ p) = c
(b) p? t = t
(c) p ? t = p
(d) p ? c = c.
16. The logically equivalent proposition of  is
(a)
(b)
(c)
(d)
17. The inverse of the statement (p ? ~ q) ? r is
(a) ~ (p ? ~q) ? ~ r
(b) (~p ? q) ? ~ r
(c) (~p ? q) ? ~ r
(d) None of these
18. If x = 5 and y = – 2, then x – 2y = 9. Then contrapositive of this
proposition is
(a) If x – 2y ? 9, then x ? 5 or y ? –2.
(b) If x – 2y = 9 then x ? 5 and y ? –2
(c) x – 2y = 9 if and only if x = 5 and y = – 2
(d) None of these
19. The statement p ? (q?p) is equivalent to
(a) p ? (p? q)
(b) p ? (p q)
Page 5


1. Let p, q and r be any three logical statements. Which one of the
following is true?
(a) 
(b)
(c)
(d)
2. ~(p ? q)? [(~p) ? (~ q)] is
(a) a tautology
(b) a contradiction
(c) neither a tautology nor contradicion
(d) cannot come any conclusion.
3. For integers m and n, both greater than 1, consider the following three
statements :
P : m divides n
Q : m divides n
2
R : m is prime,
then
(a)
(b)
(c)
(d)
4. If is false and q and r are both false, then p is
(a) True
(b) False
(c) May be true or false
(d) Data sufficient
5. Consider the following statements
p : x, y ? Z such that x and y are odd.
q : xy is odd. Then,
(a) p ? q is true
(b) is true
(c) Both (a) and (b)
(d) None of these
6. If S*(p, q, r) is the dual of the compound statement S(p,q,r) and S
(p,q,r) = ~ p ? [~ (q ? r)] then S*(~p, ~q, ~r) is equivalent to –
(a) S (p, q, r)
(b) ~ S (~p, ~q, ~r)
(c) ~ S (p, q, r)
(d) S*(p, q, r)
7. The dual of statement (p ? q) ? ~ q p? ~ q is
(a) (p ? q) ? ~ q p ? ~ q
(b) (p ? q) ? ~ q p ? ~ q
(c) (p ? q) ? ~ q p ? ~ q
(d) (p ? q) ? ~ q p ? ~ q.
8. The converse of the statement if x< y then x
2
 < y
2
 is
(a) If x is not less then y then x
2
 is not less than y
2
(b) If x
2 
< y
2 
then x < y
(c) If x
2 
= y
2 
then x = y
(d) None of these
9. If p and q are true statement and r, s are false statements, then the truth
value of  ~ [(p?~r) ? ( ~q ? s)] is
(a) true
(b) false
(c) false if p is true
(d) None of these
10. Identify the false statement
(a) ~ [p ? (~ q)] = (~ p) ? q
(b) [p ? q] ? (~ p) is a tautology
(c) [p ? q) ?  (~ p) is a contradiction
(d) ~ [p ? q] = (~ p) ? (~ q)
11. The contrapositive of p ? (~q ? ~r) is –
(a) (~ q ? r) ? ~ p
(b) (q ? r) ? ~p
(c) (q ? ~r) ? ~ p
(d) None of these
12. Which of the following is wrong ?
(a) p ? q is logically equivalent to ~ p ? q
(b) If the truth values of p, q, r are T, F, T respectively, then the truth value
of (p ? q) ? (q ? r) is T
(c) ~ (p ? q ? r)  ~ p ? ~ q ? ~ r
(d) The truth value of p ? ~ (p ? q) is always T.
13. The false statement of the following is
(a) is a contradiction
(b) is a contradiction
(c) is a tautology
(d) p is a tautology
14. In the truth table for the statement ( ~ p ? ~ q) ? ( ~ q ? ~ p),  the last
column has the truth value in the following order is
(a) TTTF
(b) FTTF
(c) TFFT
(d) TTTT
15. If p is any statement, t is tautology and c is a contradiction, then which
of the following is not correct?
(a) p? (~ p) = c
(b) p? t = t
(c) p ? t = p
(d) p ? c = c.
16. The logically equivalent proposition of  is
(a)
(b)
(c)
(d)
17. The inverse of the statement (p ? ~ q) ? r is
(a) ~ (p ? ~q) ? ~ r
(b) (~p ? q) ? ~ r
(c) (~p ? q) ? ~ r
(d) None of these
18. If x = 5 and y = – 2, then x – 2y = 9. Then contrapositive of this
proposition is
(a) If x – 2y ? 9, then x ? 5 or y ? –2.
(b) If x – 2y = 9 then x ? 5 and y ? –2
(c) x – 2y = 9 if and only if x = 5 and y = – 2
(d) None of these
19. The statement p ? (q?p) is equivalent to
(a) p ? (p? q)
(b) p ? (p q)
(c) p ? (p q)
(d) p ? (p ?q)
20. The negation of (p ? q) ? (q ? ~ r) is
(a) (~ p ? ~ q) ? (q ? ~ r)
(b) (~ p ? ~ q) ? (~ q ? r)
(c) (~ p ? ~ q) ? (~ q ? r)
(d) (p ? q) ? (~ q ? ~ r)
21. Let p: Kiran passed the examination,
q: Kiran is sad
The symbolic form of a statement “It is not true that Kiran passed therefore
she is sad” is
(a) (~ p? q)
(b) (p ? ~q)
(c) ~ (p? ~ q)
(d) ~ ( p?q)
22. The conditional  ? p is
(a) A tautology
(b) A fallacy i.e., contradiction
(c) Neither tautology nor fallacy
(d) None of these
23. If p, q are true and r is false statement, then which of the following is
true statement?
(a) (p  q)  r is F
(b) (p  q) ? r is T
(c) (p  q)  (p  r) is T
(d) (p ? q) ? (p ? r) is T
24. Let p, q, r be  three statements. Then  is equal to
(a)
(b)
Read More
174 docs

Top Courses for JEE

174 docs
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

video lectures

,

Summary

,

practice quizzes

,

past year papers

,

ppt

,

Important questions

,

shortcuts and tricks

,

mock tests for examination

,

Mathematical Reasoning Practice Questions - DPP for JEE

,

pdf

,

MCQs

,

Sample Paper

,

Mathematical Reasoning Practice Questions - DPP for JEE

,

Viva Questions

,

Free

,

Exam

,

Extra Questions

,

Semester Notes

,

Previous Year Questions with Solutions

,

Objective type Questions

,

Mathematical Reasoning Practice Questions - DPP for JEE

,

study material

;