Physics Exam  >  Physics Notes  >  Physics for IIT JAM, UGC - NET, CSIR NET  >  Examples : Euler-Lagrange Equation - 1

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET PDF Download

Example 1 : Show that the geodesic (shortest distance between two points) in a Euclidian plane is a straight line.

Solution: Take P ( x1 , y1 ) and Q ( x2 , y2 ) be two fixed points in a Euclidean plane. Let y = f ( x ) be the curve between P and Q. Then the element of distance between two neighboring points on the curve y = f ( x ) joining P and Q is given by

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET
Hence the total distance between the point P and Q along the curve is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (1) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (2) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (3) 

Now from equation (2) we find that  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Squaring we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (4)

This is the required straight line. Thus the shortest distance between two points in a Euclidean plane is a straight line. 


Example 2 : Show that the shortest distance between two polar points in a plane is a straight line. 

Solution:  Define a curve in a plane. If A ( x, y ) and B ( x + dx, y + dy ) are infinitesimal points on the curve, then an element of distance between A and B is 
given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (1) 

Let  θ = θ ( r ) be the polar equation of the curve and Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET be two polar points on it.  Recall the relations 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Hence equation (1) becomes 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (2) 

Thus the total distance between the points P and Q becomes 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (3) 

The functional I is shortest if the integrand 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (4) 

must satisfy the Euler-Lagrange’s differential equation 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET        ...(5) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Squaring and solving for θ we get 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

On integrating we get 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

where θ0 is a constant of integration. We write this as  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (6) 

This is the polar form of the equation of straight line. Hence the shortest distance between two polar points is a straight line. 

Note : If r = r (θ ) is the polar equation of the curve, then the length of the curve is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Since the integrandExamples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NETdoes not contain θ , we therefore have 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Solving this equation we readily obtain the same polar equation of straight line as the geodesic. 

 

Example 3 : Show that the geodesic Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NETon the surface of a sphere is an arc of the great circle. 

Solution : Consider a sphere of radius r described by the equations

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (1) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET be two neighboring points on the curve joining the points P and Q. Then the infinitesimal distance between A and B along the curve is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (2) 

where from equation (1) we find 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET
Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (3) 

Squaring and adding these equations we readily obtain   

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (4) 

Hence the total distance between the points P and Q along the curve φ = φ (θ ) is given by  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

where  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (6) 

The curve is geodesic if the functional I is stationary. This is true if the function f must satisfy the Euler-Lagrange’s equations.

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (7) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Solving for φ ′ we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

On simplifying we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (8) 

Put    Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Therefore we have  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get 

or Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

This is the first-degree equation in x, y, z, which represents a plane. This plane passes through the origin, hence cutting the sphere in a great circle. Hence the geodesic on the surface of a sphere is an arc of a great circle. 

 

Example 4 : Show that the curve is a catenary for which the area of surface of revolution is minimum when revolved about y-axis.

Solution: Consider a curve between two points ( x1 , y1 ) and ( x2 , y2 ) in the xy plane whose equation is y = y ( x ) . We form a surface by revolving the curve about y-axis. Our claim is to find the nature of the curve for which the surface area is minimum. Consider a small strip at a point A formed by revolving the arc length ds about y –axis. If the distance of the point A on the curve from y-axis is x, then the surface 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

area of the strip is equal to 2π x ds . But we know the element of arc ds is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Thus the surface area of the strip ds is equal to 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Hence the total area of the surface of revolution of the curve y = y ( x ) about y- axis is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (1) 

This surface area will be minimum if the integrand 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (2) 

must satisfy Euler-Lagrange’s equation

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (3) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Solving for y′ we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get 

 Or  Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (4) 

This shows that the curve is the catenary

 

  • The Brachistochrone Problem :  

The Brachistochrone is the curve joining two points not lie on the vertical line, such that the particle falling from rest under the influence of gravity from higher point to the lower point in minimum time. The curve is called the cycloid. 

Example 5: Find the curve of quickest decent. 

 Or   

  A particle slides down a curve in the vertical plane under gravity. Find the curve such that it reaches the lowest point in shortest time. 

Solution: Let A and B be two points on the curve not lie on the vertical line. Let Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NETbe the speed of the particle along the curve. Then the time required to fall an 
arc length ds is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Therefore the total time required for the particle to go from A to B is given by

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (1) 

Since the particle falls freely under gravity, therefore its potential energy goes on decreasing and is given by 

V = −mgx , 
and the kinetic energy is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Now from the principle of conservation of energy we have  

T + V = constant.

Initially at point A, we have x = 0 and v = 0 . Hence the constant is zero.   

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (2) 

Hence equation (1) becomes 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (3) 

Thus tAB is minimum if the integrand  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (4) 

must satisfy Euler-Lagrange’s equation 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (5) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Solving it for y′ we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (6) 

Put  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (7) 

Hence    

IfExamples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

hence  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (8) 

Thus from equations (7) and (8) we have  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

This is a cycloid. Thus the curve is a cycloid for which the time of decent is minimum. 

 

Example 6 : Find the extremal of the functional   

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

subject to the conditions that  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Solution:  Let the functional be denoted by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (1) 

The functional is extremum if the integrand  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (2) 

must satisfy the Euler-Lagrange’s equation 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (3) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (4) 

This is second order differential equation, whose complementary function (C.F.) is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (5)

where c1 and c2 are arbitrary constants. The particular integral (P.I.) is  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Hence the general solution is given by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (6)

This shows that the extremals of the functional are the two-parameter family of curves. On using the boundary conditions we obtain 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Hence the required extremal is 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (7) 

 

Example 7 : Find the extremal of the functional  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

subject to the conditions that  

y (1) = 0, y ( 2 ) = 3 .

Solution:  Let the functional be denoted by 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (1) 

The functional is extremum if the integrand  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET . . . (2) 

must satisfy the Euler-Lagrange’s equation 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET     (3) 

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get  

or Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Integrating we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET. . . (4) 

Now using the boundary conditions we get  

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET

Solving these two equations we obtain  

a = 2, b = −1 .  

Hence the required functional becomes 
Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET  . . . (5) 

The document Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM, UGC - NET, CSIR NET is a part of the Physics Course Physics for IIT JAM, UGC - NET, CSIR NET.
All you need of Physics at this link: Physics
158 docs

FAQs on Examples : Euler-Lagrange Equation - 1 - Physics for IIT JAM, UGC - NET, CSIR NET

1. What is the Euler-Lagrange equation in physics?
Ans. The Euler-Lagrange equation is a fundamental equation in classical mechanics that describes the motion of a system. It is derived from the principle of least action and provides the equations of motion for a system by minimizing the action integral.
2. How is the Euler-Lagrange equation derived?
Ans. The Euler-Lagrange equation is derived by considering the principle of least action, which states that the path taken by a system between two points in space and time will minimize the action. By varying the path and setting the variation of the action to zero, the Euler-Lagrange equation is obtained.
3. What is the significance of the Euler-Lagrange equation in physics?
Ans. The Euler-Lagrange equation is significant in physics as it allows us to derive the equations of motion for a system by considering the principle of least action. It provides a powerful mathematical framework that can be applied to various physical systems, from classical mechanics to field theory.
4. Can the Euler-Lagrange equation be used in quantum mechanics?
Ans. Yes, the Euler-Lagrange equation can be extended to quantum mechanics by considering quantum variations. In quantum field theory, the Euler-Lagrange equation is replaced by the quantum field equation, such as the Dirac equation or the Klein-Gordon equation, which describe the behavior of quantum fields.
5. Are there any applications of the Euler-Lagrange equation beyond classical mechanics?
Ans. Yes, the Euler-Lagrange equation has applications beyond classical mechanics. It is also used in various areas of physics, such as electromagnetism, quantum field theory, and general relativity. It provides a mathematical framework for understanding the behavior of physical systems and deriving their equations of motion.
Explore Courses for Physics exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

CSIR NET

,

ppt

,

Free

,

Objective type Questions

,

Exam

,

UGC - NET

,

MCQs

,

video lectures

,

Summary

,

shortcuts and tricks

,

mock tests for examination

,

Important questions

,

practice quizzes

,

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM

,

Previous Year Questions with Solutions

,

Extra Questions

,

UGC - NET

,

past year papers

,

study material

,

CSIR NET

,

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM

,

pdf

,

CSIR NET

,

Sample Paper

,

Viva Questions

,

Semester Notes

,

Examples : Euler-Lagrange Equation - 1 | Physics for IIT JAM

,

UGC - NET

;