Download, print and study this document offline |
Page 1 F2L Algorithms (First 2 Layers) Algorithm Presentation Format Basic Inserts U (R U' R') y' U' (R' U R) y U' (L' U L) y' (R' U' R) y (L' U' L) (R U R') F2L Case 1 U' (R U' R' U) y' (R' U' R) y' U (R' U' R U') (R' U' R) U' (R U R' U) (R U R') U' (R U2' R' U) y' (R' U' R) U' (R U2' R') d (R' U' R) R' U2' R2 U R2' U R y' U (R' U2 R) U' y (R U R') (R U' R' U) (R U' R') U2 (R U' R') y' U (R' U R U') (R' U' R) U' (R U' R' U) (R U R') F2L Case 2 (U' R U R') U2 (R U' R') y' (U R' U' R) U2' (R' U R) d (R' U' R) U2' (R' U R) Note – (y' U) and (d) are interchangeable U' (R U2' R') U2 (R U' R') y' U (R' U2 R) U2' (R' U R) d (R' U2 R) U2' (R' U R) F2L Case 3 U (R U2 R') U (R U' R') y' U' (R' U2 R) U' (R' U R) U2 (R U R' U) (R U' R') (R U' R') U2 (R U R') y' U2 (R' U' R) U' (R' U R) F' L' U2 L F Note – The second algorithm is fewer moves, but less intuitive and less finger-friendly. Suggested algorithm here Alternative algorithms here Set up F2L pair // Solve F2L pair It is not recommended to learn any of these algorithms before learning intuitive F2L. The black part of each algorithm sets up the pieces to a basic insertion case, which is then written in blue. Page 2 F2L Algorithms (First 2 Layers) Algorithm Presentation Format Basic Inserts U (R U' R') y' U' (R' U R) y U' (L' U L) y' (R' U' R) y (L' U' L) (R U R') F2L Case 1 U' (R U' R' U) y' (R' U' R) y' U (R' U' R U') (R' U' R) U' (R U R' U) (R U R') U' (R U2' R' U) y' (R' U' R) U' (R U2' R') d (R' U' R) R' U2' R2 U R2' U R y' U (R' U2 R) U' y (R U R') (R U' R' U) (R U' R') U2 (R U' R') y' U (R' U R U') (R' U' R) U' (R U' R' U) (R U R') F2L Case 2 (U' R U R') U2 (R U' R') y' (U R' U' R) U2' (R' U R) d (R' U' R) U2' (R' U R) Note – (y' U) and (d) are interchangeable U' (R U2' R') U2 (R U' R') y' U (R' U2 R) U2' (R' U R) d (R' U2 R) U2' (R' U R) F2L Case 3 U (R U2 R') U (R U' R') y' U' (R' U2 R) U' (R' U R) U2 (R U R' U) (R U' R') (R U' R') U2 (R U R') y' U2 (R' U' R) U' (R' U R) F' L' U2 L F Note – The second algorithm is fewer moves, but less intuitive and less finger-friendly. Suggested algorithm here Alternative algorithms here Set up F2L pair // Solve F2L pair It is not recommended to learn any of these algorithms before learning intuitive F2L. The black part of each algorithm sets up the pieces to a basic insertion case, which is then written in blue. Incorrectly Connected Pieces y' (R' U R) U2' y (R U R') (R U R') U2 (R U' R' U) (R U' R') (R U' R' U2) y' (R' U' R) U F (R U R' U') F' (U R U' R') (R U2 R') U' (R U R') y' (R' U2 R) U (R' U' R) U (R U' R' U') (R U' R' U) (R U' R') (R U R' U2') (R U R' U') (R U R') y' U' (R' U R U) (R' U R U') (R' U R) F (U R U' R') F' (R U' R') Corner in Place, Edge in U Face U' F' (R U R' U') R' F R R' F' R U (R U' R') F U (R U' R') U' (F' U F) U (R U' R') (F R' F' R) (R U' R' U) (R U' R') y' (R' U R U') (R' U R) y' (R' U' R U) (R' U' R) (R' F R F') U (R U' R') (R U R' U') (R U R') Edge in Place, Corner in U face (R U' R' U) y' (R' U R) U' (R' F R F') (R U' R') (U R U' R') (U R U' R') (U R U' R') (U' R U' R') U2 (R U' R') U (R U R') U2 (R U R') (U' R U R') U y' (R' U' R) U (F' U' F) U' (R U R') Edge and Corner in Place Solved Pair (R U' R') d (R' U2 R) U2' (R' U R) (R U' R' U') R U R' U2 (R U' R') (R U R' U') R U2 R' U' (R U R') (R U' R' U) (R U2' R') U (R U' R') (R U R') U2' (R U' R' U) (R U R') (F' U F) U2 (R U R' U) (R U' R') (R U' R') F (R U R' U') F' (R U' R') (R U R' U') (R U' R') U2 y' (R' U' R) Page 3 F2L Algorithms (First 2 Layers) Algorithm Presentation Format Basic Inserts U (R U' R') y' U' (R' U R) y U' (L' U L) y' (R' U' R) y (L' U' L) (R U R') F2L Case 1 U' (R U' R' U) y' (R' U' R) y' U (R' U' R U') (R' U' R) U' (R U R' U) (R U R') U' (R U2' R' U) y' (R' U' R) U' (R U2' R') d (R' U' R) R' U2' R2 U R2' U R y' U (R' U2 R) U' y (R U R') (R U' R' U) (R U' R') U2 (R U' R') y' U (R' U R U') (R' U' R) U' (R U' R' U) (R U R') F2L Case 2 (U' R U R') U2 (R U' R') y' (U R' U' R) U2' (R' U R) d (R' U' R) U2' (R' U R) Note – (y' U) and (d) are interchangeable U' (R U2' R') U2 (R U' R') y' U (R' U2 R) U2' (R' U R) d (R' U2 R) U2' (R' U R) F2L Case 3 U (R U2 R') U (R U' R') y' U' (R' U2 R) U' (R' U R) U2 (R U R' U) (R U' R') (R U' R') U2 (R U R') y' U2 (R' U' R) U' (R' U R) F' L' U2 L F Note – The second algorithm is fewer moves, but less intuitive and less finger-friendly. Suggested algorithm here Alternative algorithms here Set up F2L pair // Solve F2L pair It is not recommended to learn any of these algorithms before learning intuitive F2L. The black part of each algorithm sets up the pieces to a basic insertion case, which is then written in blue. Incorrectly Connected Pieces y' (R' U R) U2' y (R U R') (R U R') U2 (R U' R' U) (R U' R') (R U' R' U2) y' (R' U' R) U F (R U R' U') F' (U R U' R') (R U2 R') U' (R U R') y' (R' U2 R) U (R' U' R) U (R U' R' U') (R U' R' U) (R U' R') (R U R' U2') (R U R' U') (R U R') y' U' (R' U R U) (R' U R U') (R' U R) F (U R U' R') F' (R U' R') Corner in Place, Edge in U Face U' F' (R U R' U') R' F R R' F' R U (R U' R') F U (R U' R') U' (F' U F) U (R U' R') (F R' F' R) (R U' R' U) (R U' R') y' (R' U R U') (R' U R) y' (R' U' R U) (R' U' R) (R' F R F') U (R U' R') (R U R' U') (R U R') Edge in Place, Corner in U face (R U' R' U) y' (R' U R) U' (R' F R F') (R U' R') (U R U' R') (U R U' R') (U R U' R') (U' R U' R') U2 (R U' R') U (R U R') U2 (R U R') (U' R U R') U y' (R' U' R) U (F' U' F) U' (R U R') Edge and Corner in Place Solved Pair (R U' R') d (R' U2 R) U2' (R' U R) (R U' R' U') R U R' U2 (R U' R') (R U R' U') R U2 R' U' (R U R') (R U' R' U) (R U2' R') U (R U' R') (R U R') U2' (R U' R' U) (R U R') (F' U F) U2 (R U R' U) (R U' R') (R U' R') F (R U R' U') F' (R U' R') (R U R' U') (R U' R') U2 y' (R' U' R) Notation R R' R2 r r' x y U U' U2 u u' z M F F' L L' B B' D D' Page 4 F2L Algorithms (First 2 Layers) Algorithm Presentation Format Basic Inserts U (R U' R') y' U' (R' U R) y U' (L' U L) y' (R' U' R) y (L' U' L) (R U R') F2L Case 1 U' (R U' R' U) y' (R' U' R) y' U (R' U' R U') (R' U' R) U' (R U R' U) (R U R') U' (R U2' R' U) y' (R' U' R) U' (R U2' R') d (R' U' R) R' U2' R2 U R2' U R y' U (R' U2 R) U' y (R U R') (R U' R' U) (R U' R') U2 (R U' R') y' U (R' U R U') (R' U' R) U' (R U' R' U) (R U R') F2L Case 2 (U' R U R') U2 (R U' R') y' (U R' U' R) U2' (R' U R) d (R' U' R) U2' (R' U R) Note – (y' U) and (d) are interchangeable U' (R U2' R') U2 (R U' R') y' U (R' U2 R) U2' (R' U R) d (R' U2 R) U2' (R' U R) F2L Case 3 U (R U2 R') U (R U' R') y' U' (R' U2 R) U' (R' U R) U2 (R U R' U) (R U' R') (R U' R') U2 (R U R') y' U2 (R' U' R) U' (R' U R) F' L' U2 L F Note – The second algorithm is fewer moves, but less intuitive and less finger-friendly. Suggested algorithm here Alternative algorithms here Set up F2L pair // Solve F2L pair It is not recommended to learn any of these algorithms before learning intuitive F2L. The black part of each algorithm sets up the pieces to a basic insertion case, which is then written in blue. Incorrectly Connected Pieces y' (R' U R) U2' y (R U R') (R U R') U2 (R U' R' U) (R U' R') (R U' R' U2) y' (R' U' R) U F (R U R' U') F' (U R U' R') (R U2 R') U' (R U R') y' (R' U2 R) U (R' U' R) U (R U' R' U') (R U' R' U) (R U' R') (R U R' U2') (R U R' U') (R U R') y' U' (R' U R U) (R' U R U') (R' U R) F (U R U' R') F' (R U' R') Corner in Place, Edge in U Face U' F' (R U R' U') R' F R R' F' R U (R U' R') F U (R U' R') U' (F' U F) U (R U' R') (F R' F' R) (R U' R' U) (R U' R') y' (R' U R U') (R' U R) y' (R' U' R U) (R' U' R) (R' F R F') U (R U' R') (R U R' U') (R U R') Edge in Place, Corner in U face (R U' R' U) y' (R' U R) U' (R' F R F') (R U' R') (U R U' R') (U R U' R') (U R U' R') (U' R U' R') U2 (R U' R') U (R U R') U2 (R U R') (U' R U R') U y' (R' U' R) U (F' U' F) U' (R U R') Edge and Corner in Place Solved Pair (R U' R') d (R' U2 R) U2' (R' U R) (R U' R' U') R U R' U2 (R U' R') (R U R' U') R U2 R' U' (R U R') (R U' R' U) (R U2' R') U (R U' R') (R U R') U2' (R U' R' U) (R U R') (F' U F) U2 (R U R' U) (R U' R') (R U' R') F (R U R' U') F' (R U' R') (R U R' U') (R U' R') U2 y' (R' U' R) Notation R R' R2 r r' x y U U' U2 u u' z M F F' L L' B B' D D' OLL Algorithms (Orientation of Last Layer) Algorithm Presentation Format All Edges Oriented Correctly R U2 R' U' R U' R' y' R' U' R U' R' U2 R OCLL6 - 26 - Probability = 1/54 R U R' U R U2' R' y' R' U2' R U R' U R OCLL7 - 27 - Probability = 1/54 (R U2 R') (U' R U R') (U' R U' R') y (R U R' U) (R U' R' U) (R U2' R') OCLL1 - 21 - Probability = 1/108 R U2' R2' U' R2 U' R2' U2' R OCLL2 - 22 - Probability = 1/54 (r U R' U') (r' F R F') y (R U R D) (R' U' R D') R2' OCLL4 - 24 - Probability = 1/54 y F' (r U R' U') r' F R x (R' U R) D' (R' U' R) D x' OCLL5 - 25 - Probability = 1/54 R2 D (R' U2 R) D' (R' U2 R') y2 R2' D' (R U2 R') D (R U2 R) OCLL3 - 23 - Probability = 1/54 T-Shapes (R U R' U') (R' F R F') T1 - 33 - Probability = 1/54 F (R U R' U') F' T2 - 45 - Probability = 1/54 Suggested algorithm here Alternative algorithms here OLL Case Name - Probability = 1/x Round brackets are used to segment algorithms to assist memorisation and group move triggers. It is recommended to learn the algorithms in the order presented. Page 5 F2L Algorithms (First 2 Layers) Algorithm Presentation Format Basic Inserts U (R U' R') y' U' (R' U R) y U' (L' U L) y' (R' U' R) y (L' U' L) (R U R') F2L Case 1 U' (R U' R' U) y' (R' U' R) y' U (R' U' R U') (R' U' R) U' (R U R' U) (R U R') U' (R U2' R' U) y' (R' U' R) U' (R U2' R') d (R' U' R) R' U2' R2 U R2' U R y' U (R' U2 R) U' y (R U R') (R U' R' U) (R U' R') U2 (R U' R') y' U (R' U R U') (R' U' R) U' (R U' R' U) (R U R') F2L Case 2 (U' R U R') U2 (R U' R') y' (U R' U' R) U2' (R' U R) d (R' U' R) U2' (R' U R) Note – (y' U) and (d) are interchangeable U' (R U2' R') U2 (R U' R') y' U (R' U2 R) U2' (R' U R) d (R' U2 R) U2' (R' U R) F2L Case 3 U (R U2 R') U (R U' R') y' U' (R' U2 R) U' (R' U R) U2 (R U R' U) (R U' R') (R U' R') U2 (R U R') y' U2 (R' U' R) U' (R' U R) F' L' U2 L F Note – The second algorithm is fewer moves, but less intuitive and less finger-friendly. Suggested algorithm here Alternative algorithms here Set up F2L pair // Solve F2L pair It is not recommended to learn any of these algorithms before learning intuitive F2L. The black part of each algorithm sets up the pieces to a basic insertion case, which is then written in blue. Incorrectly Connected Pieces y' (R' U R) U2' y (R U R') (R U R') U2 (R U' R' U) (R U' R') (R U' R' U2) y' (R' U' R) U F (R U R' U') F' (U R U' R') (R U2 R') U' (R U R') y' (R' U2 R) U (R' U' R) U (R U' R' U') (R U' R' U) (R U' R') (R U R' U2') (R U R' U') (R U R') y' U' (R' U R U) (R' U R U') (R' U R) F (U R U' R') F' (R U' R') Corner in Place, Edge in U Face U' F' (R U R' U') R' F R R' F' R U (R U' R') F U (R U' R') U' (F' U F) U (R U' R') (F R' F' R) (R U' R' U) (R U' R') y' (R' U R U') (R' U R) y' (R' U' R U) (R' U' R) (R' F R F') U (R U' R') (R U R' U') (R U R') Edge in Place, Corner in U face (R U' R' U) y' (R' U R) U' (R' F R F') (R U' R') (U R U' R') (U R U' R') (U R U' R') (U' R U' R') U2 (R U' R') U (R U R') U2 (R U R') (U' R U R') U y' (R' U' R) U (F' U' F) U' (R U R') Edge and Corner in Place Solved Pair (R U' R') d (R' U2 R) U2' (R' U R) (R U' R' U') R U R' U2 (R U' R') (R U R' U') R U2 R' U' (R U R') (R U' R' U) (R U2' R') U (R U' R') (R U R') U2' (R U' R' U) (R U R') (F' U F) U2 (R U R' U) (R U' R') (R U' R') F (R U R' U') F' (R U' R') (R U R' U') (R U' R') U2 y' (R' U' R) Notation R R' R2 r r' x y U U' U2 u u' z M F F' L L' B B' D D' OLL Algorithms (Orientation of Last Layer) Algorithm Presentation Format All Edges Oriented Correctly R U2 R' U' R U' R' y' R' U' R U' R' U2 R OCLL6 - 26 - Probability = 1/54 R U R' U R U2' R' y' R' U2' R U R' U R OCLL7 - 27 - Probability = 1/54 (R U2 R') (U' R U R') (U' R U' R') y (R U R' U) (R U' R' U) (R U2' R') OCLL1 - 21 - Probability = 1/108 R U2' R2' U' R2 U' R2' U2' R OCLL2 - 22 - Probability = 1/54 (r U R' U') (r' F R F') y (R U R D) (R' U' R D') R2' OCLL4 - 24 - Probability = 1/54 y F' (r U R' U') r' F R x (R' U R) D' (R' U' R) D x' OCLL5 - 25 - Probability = 1/54 R2 D (R' U2 R) D' (R' U2 R') y2 R2' D' (R U2 R') D (R U2 R) OCLL3 - 23 - Probability = 1/54 T-Shapes (R U R' U') (R' F R F') T1 - 33 - Probability = 1/54 F (R U R' U') F' T2 - 45 - Probability = 1/54 Suggested algorithm here Alternative algorithms here OLL Case Name - Probability = 1/x Round brackets are used to segment algorithms to assist memorisation and group move triggers. It is recommended to learn the algorithms in the order presented. Squares (r' U2' R U R' U r) S1 - 5 - Probability = 1/54 (r U2 R' U' R U' r') S2 - 6 - Probability = 1/54 C-Shapes (R U R2' U') (R' F R U) R U' F' C1 - 34 - Probability = 1/54 R' U' (R' F R F') U R C2 - 46 - Probability = 1/54 W-Shapes (R' U' R U') (R' U R U) l U' R' U x y2 (R U R' F') (R U R' U') (R' F R U') (R' F R F') W1 - 36 - Probability = 1/54 (R U R' U) (R U' R' U') (R' F R F') W2 - 38 - Probability = 1/54 Corners Correct, Edges Flipped (r U R' U') M (U R U' R') E1 - 28 - Probability = 1/54 (R U R' U') M' (U R U' r') E2 - 57 - Probability = 1/108 P-Shapes (R' U' F) (U R U' R') F' R P1 - 31 - Probability = 1/54 R U B' (U' R' U) (R B R') S (R U R' U') (R' F R f') P2 - 32 - Probability = 1/54 y R' U' F' U F R f' (L' U' L U) f P3 - 43 - Probability = 1/54 f (R U R' U') f' y2 F (U R U' R') F' P4 - 44 - Probability = 1/54Read More
22 videos|19 docs
|
|
Explore Courses for Class 6 exam
|