Civil Engineering (CE) Exam  >  Civil Engineering (CE) Notes  >  Engineering Mechanics  >  Force System Analysis: Resultants, Reduction and Distributed Loads

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE) PDF Download

The basic idea: Two force systems are equivalent if they result in the same resultant force and the same resultant moment.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Moving a force along its line of action: Moving a force along its line of action results in a new force system which is equivalent to the original force system.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Moving a force off its line of action: If a force is moved off its line of action, a couple must be added to the force system so that the new system generates the same moment as the old system.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

The resultant of a force and couple system: For any point O, every force and couple system can be made equivalent to a single force passing through O and a single couple. The single force passing through O is equal to the resultant force of the original system, and the couple is equal to the resultant moment of the original system around point O.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

When can one reduce a force and couple system to a single force?: For a force and couple system if the resultant force and the resultant couple are perpendicular, then one can find an equivalent system with a single force and no couple. To obtain this system, move the resultant force a distance d along the line perpendicular to the plane of the resultant force and resultant couple until the resultant force creates a moment equivalent to the resultant couple.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Note: All 2-D force systems can be reduced to a single force. To find the line of action of the force, the moment of the original system must be forced to be the same as the system with the single force.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Further Reduction of a Force and Couple System                                    

(Section 4.9)

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

If FR and MRO are perpendicular to each other, then the system can be further reduced to a single force, FR , by simply moving FR from O to P.

In three special cases, concurrent, coplanar, and parallel systems of forces, the system can always be reduced to a single force.

Example #1

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Given: A 2­D force and couple system as shown.

Find: The equivalent resultant force and couple moment acting at A and then the equivalent single force location along the beam AB.

Plan:

  1. Sum all the x and y components of the forces to find FRA.
  2. Find and sum all the moments resulting from moving each force to A.
  3. Shift the FRA to a distance d such that d = MRA/FRy

Example #1

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

+ → Σ FRx  =  25 + 35 sin 30°   = 42.5 lb

+  ↓ Σ FRy  =  20 + 35 cos 30°   = 50.31 lb

+  MRA   =  35 cos30° (2)  + 20(6)  – 25(3) = 105.6  lb∙ft

FR = ( 42.52 + 50.312 )1/2 = 65.9 lb

θ = tan-­1 ( 50.31/42.5) = 49.8 °

The equivalent single force FR can be located on the beam AB at a distance d measured from A.

d = MRA/FRy = 105.6/50.31 = 2.10 ft.

Example #2

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Given: The building slab has four columns. F1 and F2 = 0.

Find:    The equivalent resultant force and couple moment at the origin O. Also find the location (x,y) of the single equivalent resultant force.

Plan:

  1. Find FRO = ∑Fi = FRzo k
  2. Find MRO = ∑ (ri × Fi) = MRxO i + MRyO j
  3. The location of the single equivalent resultant force is given as x = ­MRyO/FRzO and y = MRxO/FRzO

Example #2  

FRO = {­50 k – 20 k} = {­70 k} kN

MRO = (10 i) × (­20 k) + (4 i + 3 j)x(­50 k)

= {200 j + 200 j – 150 i} kN∙m

= {­150 i + 400 j } kN∙m

The location of the single equivalent resultant force is given as,

x = ­MRyo/FRzo = ­400/(­70) = 5.71 m

y = MRxo/FRzo = (­150)/(­70) = 2.14 m

Distributed Loads

Wind and water loads, cars on a bridge, and people on a crowded walkway often generate loads that are approximated as a pressure (force per unit area) or a distributed load (force per unit length). In order to utilize our equilibrium equations, however, we need forces and moments. Consequently, it is often necessary to replace a pressure or distributed load with a single force. First, consider a simple example. We will apply a uniform load to a beam that is 3 m long and the space, a between the wall and the beginning of the applied load is 0.5 m. It should be easy to see that, if we want to replace this with a single force, it must be a 250 N load placed in the middle of the loaded region (i.e. Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE) 1:75 m).

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Next, take the system shown below, a cantilevered beam with an increasing, triangular distributed load which peaks at w0.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

The distributed load has units of force per unit length (N/m or lbs./ft.) and, in this case, can be written as,

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)          (11.1)

In order to ensure that the forces in the two systems are equivalent, we require

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)      (11.2)

which yields,

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

We also want it to have the same moment about the origin. In order to do this we require that,

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)  (11.3)

which yields,

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

and the position of the force,  Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE) must be 2/3 L

Example Here is another distributed load acting on a beam. Replace the distributed load with a single force.

Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE) 

The document Force System Analysis: Resultants, Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE) is a part of the Civil Engineering (CE) Course Engineering Mechanics.
All you need of Civil Engineering (CE) at this link: Civil Engineering (CE)
24 videos|59 docs|53 tests

Top Courses for Civil Engineering (CE)

FAQs on Force System Analysis: Resultants, Reduction and Distributed Loads - Engineering Mechanics - Civil Engineering (CE)

1. What is the significance of calculating resultants in force system analysis?
Ans. Resultants in force system analysis are crucial as they represent the overall effect of all the forces acting on a body or structure. By calculating resultants, we can simplify the problem and analyze the system more efficiently.
2. How can reduction of forces help in force system analysis?
Ans. Reduction of forces involves replacing a system of forces with a single equivalent force. This simplifies the analysis by reducing the number of forces to consider, making it easier to determine the overall effect on the object or structure.
3. What are distributed loads in force system analysis?
Ans. Distributed loads are forces that are spread over a certain area rather than being concentrated at a single point. They can be uniform or varying, and analyzing their effects is essential in understanding the behavior of a structure under different loading conditions.
4. How does analyzing distributed loads differ from analyzing concentrated loads in force system analysis?
Ans. Analyzing distributed loads requires considering how the load is distributed over an area, which can involve calculating the load intensity at different points. This is in contrast to concentrated loads, which act at a single point and have a more straightforward analysis process.
5. Why is it important to understand how to handle distributed loads in force system analysis?
Ans. Understanding how to analyze distributed loads is crucial because many real-world structures and systems experience loads that are distributed over an area. Being able to accurately assess the effects of these loads is essential for designing safe and efficient structures.
24 videos|59 docs|53 tests
Download as PDF
Explore Courses for Civil Engineering (CE) exam

Top Courses for Civil Engineering (CE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

practice quizzes

,

ppt

,

Force System Analysis: Resultants

,

Viva Questions

,

video lectures

,

MCQs

,

Free

,

Objective type Questions

,

past year papers

,

Summary

,

Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

,

shortcuts and tricks

,

Semester Notes

,

study material

,

Sample Paper

,

mock tests for examination

,

Force System Analysis: Resultants

,

pdf

,

Extra Questions

,

Force System Analysis: Resultants

,

Important questions

,

Previous Year Questions with Solutions

,

Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

,

Reduction and Distributed Loads | Engineering Mechanics - Civil Engineering (CE)

,

Exam

;