Civil Engineering (CE) Exam  >  Civil Engineering (CE) Notes  >  Transportation Engineering  >  Formula Sheets: Airport, Dock, Harbour & Tunneling Engineering

Formula Sheets: Airport, Dock, Harbour & Tunneling Engineering | Transportation Engineering - Civil Engineering (CE) PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


GA TE CE 2026 F orm ula Sheet: Airp ort R un w a y and T axiw a y
Design
1. Concept of Airp ort R un w a y Length
• Basic run w a y length (landing):
L
b
=
V
2
s
2a
where:
– L
b
: Basic run w a y length for landing (m)
– V
s
: Stall sp eed of aircraft (m/s)
– a : Deceleration rate (m/s², t ypically 3–5 m/s²)
• Basic run w a y length (tak eoff ):
L
b
=s
1
+s
2
+s
3
where:
– s
1
: Ground run distance (m)
– s
2
: T ransition distance (m)
– s
3
: Clim b distance to clear 35 ft obstacle (m)
• Ground run distance (tak eoff ):
s
1
=
WV
2
LOF
2g(T -D-µW)
where:
– W : Aircraft w eigh t (N)
– V
LOF
: Lift-off sp eed ( m/s, t ypically 1.2 V
s
)
– g : A cceleration due to gra vit y (9.81 m/s²)
– T : Thrust (N)
– D : Drag (N)
– µ : F riction co e?icien t (t ypically 0.02–0.04)
• T otal run w a y length with safet y factors:
L
total
= 1.15·L
b
( for tak eoff, includes safet y margin )
2. R un w a y Length Cor rections
• Correction for elev ation:
L
e
=L
b
·
(
1+
h
300
)
where:
– L
e
: R un w a y length corrected for elev ation (m)
– h : Airp ort elev ation ab o v e mean sea lev el (m)
• Correction for temp erature:
L
t
=L
e
·[1+0.01(T
a
-T
s
)]
where:
– L
t
: R un w a y length corrected for temp erature (m)
– T
a
: A ctual airp ort temp erature ( °C)
– T
s
: Standard temp erature at elev ation, T
s
= 15-0.0065h (°C)
1
Page 2


GA TE CE 2026 F orm ula Sheet: Airp ort R un w a y and T axiw a y
Design
1. Concept of Airp ort R un w a y Length
• Basic run w a y length (landing):
L
b
=
V
2
s
2a
where:
– L
b
: Basic run w a y length for landing (m)
– V
s
: Stall sp eed of aircraft (m/s)
– a : Deceleration rate (m/s², t ypically 3–5 m/s²)
• Basic run w a y length (tak eoff ):
L
b
=s
1
+s
2
+s
3
where:
– s
1
: Ground run distance (m)
– s
2
: T ransition distance (m)
– s
3
: Clim b distance to clear 35 ft obstacle (m)
• Ground run distance (tak eoff ):
s
1
=
WV
2
LOF
2g(T -D-µW)
where:
– W : Aircraft w eigh t (N)
– V
LOF
: Lift-off sp eed ( m/s, t ypically 1.2 V
s
)
– g : A cceleration due to gra vit y (9.81 m/s²)
– T : Thrust (N)
– D : Drag (N)
– µ : F riction co e?icien t (t ypically 0.02–0.04)
• T otal run w a y length with safet y factors:
L
total
= 1.15·L
b
( for tak eoff, includes safet y margin )
2. R un w a y Length Cor rections
• Correction for elev ation:
L
e
=L
b
·
(
1+
h
300
)
where:
– L
e
: R un w a y length corrected for elev ation (m)
– h : Airp ort elev ation ab o v e mean sea lev el (m)
• Correction for temp erature:
L
t
=L
e
·[1+0.01(T
a
-T
s
)]
where:
– L
t
: R un w a y length corrected for temp erature (m)
– T
a
: A ctual airp ort temp erature ( °C)
– T
s
: Standard temp erature at elev ation, T
s
= 15-0.0065h (°C)
1
• Correction for gradien t:
L
g
=L
t
·(1+0.1G)
where:
– L
g
: R un w a y length corrected for gradien t (m)
– G : Effectiv e run w a y gradien t (%, t ypically 0–2%)
• Com bined corrected run w a y length:
L
corrected
=L
b
·
(
1+
h
300
)
·[1+0.01(T
a
-T
s
)]·(1+0.1G)
3. T axiw a y Design
• Minim um taxiw a y width (ICA O standards):
W
t
=k·W
g
where:
– W
t
: T axiw a y width (m)
– W
g
: Main gear width of aircraft (m)
– k : F actor based on aircraft category (e.g., 1.5–2.0)
• Minim um radius of taxiw a y curv e:
R
t
=
V
2
g·f
where:
– R
t
: Radius of taxiw a y curv e (m)
– V : T axiing sp eed (m/s, t ypically 10–15 m/s)
– g : A cceleration due to gra vit y (9.81 m/s²)
– f : Co e?icien t of friction (t ypically 0.13)
• T axiw a y edge safet y margin:
M
e
=
W
w
-W
t
2
where:
– M
e
: Edge safet y margin (m)
– W
w
: Wheelbase width of aircraft (m)
4. Exit T axiw a y Design
• Lo cation of exit taxiw a y:
D
e
=V
d
·t
d
+
V
2
d
2a
where:
– D
e
: Distance from run w a y threshold to exit taxiw a y (m)
– V
d
: Deceleration sp eed at exit (m/s, t ypically 15–25 m/s)
– t
d
: Time to reac h exit taxiw a y (s)
– a : Deceleration rate (m/s², t ypically 1.5–2.5 m/s²)
• Exit taxiw a y angle:
?
e
= tan
-1
(
V
2
e
gR
e
)
where:
2
Page 3


GA TE CE 2026 F orm ula Sheet: Airp ort R un w a y and T axiw a y
Design
1. Concept of Airp ort R un w a y Length
• Basic run w a y length (landing):
L
b
=
V
2
s
2a
where:
– L
b
: Basic run w a y length for landing (m)
– V
s
: Stall sp eed of aircraft (m/s)
– a : Deceleration rate (m/s², t ypically 3–5 m/s²)
• Basic run w a y length (tak eoff ):
L
b
=s
1
+s
2
+s
3
where:
– s
1
: Ground run distance (m)
– s
2
: T ransition distance (m)
– s
3
: Clim b distance to clear 35 ft obstacle (m)
• Ground run distance (tak eoff ):
s
1
=
WV
2
LOF
2g(T -D-µW)
where:
– W : Aircraft w eigh t (N)
– V
LOF
: Lift-off sp eed ( m/s, t ypically 1.2 V
s
)
– g : A cceleration due to gra vit y (9.81 m/s²)
– T : Thrust (N)
– D : Drag (N)
– µ : F riction co e?icien t (t ypically 0.02–0.04)
• T otal run w a y length with safet y factors:
L
total
= 1.15·L
b
( for tak eoff, includes safet y margin )
2. R un w a y Length Cor rections
• Correction for elev ation:
L
e
=L
b
·
(
1+
h
300
)
where:
– L
e
: R un w a y length corrected for elev ation (m)
– h : Airp ort elev ation ab o v e mean sea lev el (m)
• Correction for temp erature:
L
t
=L
e
·[1+0.01(T
a
-T
s
)]
where:
– L
t
: R un w a y length corrected for temp erature (m)
– T
a
: A ctual airp ort temp erature ( °C)
– T
s
: Standard temp erature at elev ation, T
s
= 15-0.0065h (°C)
1
• Correction for gradien t:
L
g
=L
t
·(1+0.1G)
where:
– L
g
: R un w a y length corrected for gradien t (m)
– G : Effectiv e run w a y gradien t (%, t ypically 0–2%)
• Com bined corrected run w a y length:
L
corrected
=L
b
·
(
1+
h
300
)
·[1+0.01(T
a
-T
s
)]·(1+0.1G)
3. T axiw a y Design
• Minim um taxiw a y width (ICA O standards):
W
t
=k·W
g
where:
– W
t
: T axiw a y width (m)
– W
g
: Main gear width of aircraft (m)
– k : F actor based on aircraft category (e.g., 1.5–2.0)
• Minim um radius of taxiw a y curv e:
R
t
=
V
2
g·f
where:
– R
t
: Radius of taxiw a y curv e (m)
– V : T axiing sp eed (m/s, t ypically 10–15 m/s)
– g : A cceleration due to gra vit y (9.81 m/s²)
– f : Co e?icien t of friction (t ypically 0.13)
• T axiw a y edge safet y margin:
M
e
=
W
w
-W
t
2
where:
– M
e
: Edge safet y margin (m)
– W
w
: Wheelbase width of aircraft (m)
4. Exit T axiw a y Design
• Lo cation of exit taxiw a y:
D
e
=V
d
·t
d
+
V
2
d
2a
where:
– D
e
: Distance from run w a y threshold to exit taxiw a y (m)
– V
d
: Deceleration sp eed at exit (m/s, t ypically 15–25 m/s)
– t
d
: Time to reac h exit taxiw a y (s)
– a : Deceleration rate (m/s², t ypically 1.5–2.5 m/s²)
• Exit taxiw a y angle:
?
e
= tan
-1
(
V
2
e
gR
e
)
where:
2
– ?
e
: Exit angle (degrees, t ypically 30°–45°)
– V
e
: Exit sp eed (m/s)
– R
e
: Radius of exit taxiw a y curv e (m)
• Minim um separation b et w een run w a y and parallel taxiw a y:
S =W
w
+2·M
s
where:
– S : Cen terline separation (m)
– W
w
: Wingspan of design aircraft (m)
– M
s
: Safet y margin (m, p er ICA O standards)
3
Read More
27 videos|118 docs|58 tests
Related Searches

Semester Notes

,

Viva Questions

,

ppt

,

Previous Year Questions with Solutions

,

Dock

,

practice quizzes

,

Formula Sheets: Airport

,

MCQs

,

Objective type Questions

,

study material

,

Important questions

,

Dock

,

past year papers

,

pdf

,

Extra Questions

,

Free

,

Sample Paper

,

Dock

,

Formula Sheets: Airport

,

Summary

,

Harbour & Tunneling Engineering | Transportation Engineering - Civil Engineering (CE)

,

Exam

,

Harbour & Tunneling Engineering | Transportation Engineering - Civil Engineering (CE)

,

mock tests for examination

,

Harbour & Tunneling Engineering | Transportation Engineering - Civil Engineering (CE)

,

Formula Sheets: Airport

,

video lectures

,

shortcuts and tricks

;