JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Function Solved Examples

Function Solved Examples | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Solved Examples on Functions 
JEE Mains 
Q1. If ?? (?? )=
?? -|?? |
|?? |
, then ?? (-?? )= 
(a) 1 
(b) -2 
(c) ?? 
(d) 2 
Ans: (b)  ?? (-1)=
-1-|-1|
|-1|
=
-1-1
1
=-2. 
Q2.  If ?? (?? )=?????? [
?? +?? ?? -?? ], then ?? [
?? ?? ?? +?? ?? ] is equal to 
(a) [?? (?? )]
?? 
(b) [?? (?? )]
?? 
(c) ?? ?? (?? ) 
(d) ?? ?? (?? ) 
Ans: (c) 
?? (?? )=log (
1+?? 1-?? )
 ??? (
2?? 1+?? 2
)=log [
1+
2?? 1+?? 2
1-
2?? 1+?? 2
]=log [
?? 2
+1+2?? ?? 2
+1-2?? ]=log [
1+?? 1-?? ]
2
=2log [
1+?? 1-?? ]=2?? (?? )
 
Q3. If ?? (?? )=?????? [?? ?? ]?? +?????? [-?? ?? ]?? , then 
(a) ?? (
?? ?? )=?? 
(b) ?? (-?? )=?? 
(c) ?? (?? )=?? 
(d) ?? (
?? ?? )=-?? 
Ans: (d) ?? (?? )=cos [?? 2
]?? +cos [-?? 2
]?? 
?? (?? )=cos (9?? )+cos (-10?? )=cos (9?? )+cos (10?? )=2cos (
19?? 2
)cos (
?? 2
) 
?? (
?? 2
)=2cos (
19?? 4
)cos (
?? 4
);?? (
?? 2
)=2×
-1
v2
×
1
v2
=-1. 
Q4.  If ?? :?? ??? satisfies ?? (?? +?? )=?? (?? )+?? (?? ) , for all ?? ,?? ??? and ?? (?? )=?? , then 
?
?? =?? ?? ??? (?? ) is 
(a) 
?? ?? ?? 
(b) 
?? (?? +?? )
?? 
(c) ?? ?? (?? +?? ) 
(d) 
?? ?? (?? +?? )
?? 
Page 2


Solved Examples on Functions 
JEE Mains 
Q1. If ?? (?? )=
?? -|?? |
|?? |
, then ?? (-?? )= 
(a) 1 
(b) -2 
(c) ?? 
(d) 2 
Ans: (b)  ?? (-1)=
-1-|-1|
|-1|
=
-1-1
1
=-2. 
Q2.  If ?? (?? )=?????? [
?? +?? ?? -?? ], then ?? [
?? ?? ?? +?? ?? ] is equal to 
(a) [?? (?? )]
?? 
(b) [?? (?? )]
?? 
(c) ?? ?? (?? ) 
(d) ?? ?? (?? ) 
Ans: (c) 
?? (?? )=log (
1+?? 1-?? )
 ??? (
2?? 1+?? 2
)=log [
1+
2?? 1+?? 2
1-
2?? 1+?? 2
]=log [
?? 2
+1+2?? ?? 2
+1-2?? ]=log [
1+?? 1-?? ]
2
=2log [
1+?? 1-?? ]=2?? (?? )
 
Q3. If ?? (?? )=?????? [?? ?? ]?? +?????? [-?? ?? ]?? , then 
(a) ?? (
?? ?? )=?? 
(b) ?? (-?? )=?? 
(c) ?? (?? )=?? 
(d) ?? (
?? ?? )=-?? 
Ans: (d) ?? (?? )=cos [?? 2
]?? +cos [-?? 2
]?? 
?? (?? )=cos (9?? )+cos (-10?? )=cos (9?? )+cos (10?? )=2cos (
19?? 2
)cos (
?? 2
) 
?? (
?? 2
)=2cos (
19?? 4
)cos (
?? 4
);?? (
?? 2
)=2×
-1
v2
×
1
v2
=-1. 
Q4.  If ?? :?? ??? satisfies ?? (?? +?? )=?? (?? )+?? (?? ) , for all ?? ,?? ??? and ?? (?? )=?? , then 
?
?? =?? ?? ??? (?? ) is 
(a) 
?? ?? ?? 
(b) 
?? (?? +?? )
?? 
(c) ?? ?? (?? +?? ) 
(d) 
?? ?? (?? +?? )
?? 
Ans: (d) ?? (?? +?? )=?? (?? )+?? (?? ) 
put ?? =1,?? =0 ??? (1)=?? (1)+?? (0)=7 
put ?? =1,?? =1 ??? (2)=2.?? (1)=2.7; similarly ?? (3)=3.7 and so on 
??
?? =1
?? ??? (?? )=7(1+2+3+?..+?? )=
7?? (?? +1)
2
. 
Q5. If ?? (?? )=
?? v
?? +?? v?? ?? -?? +
?? v
?? -?? v?? ?? -?? for ?? >?? , then ?? (???? )= 
(a) 
?? ?? 
(b) 
?? ?? 
(c) 
?? ?? 
(d) 
?? ?? 
Ans: (c) 
?? (?? )=
1
v
?? +2v2?? -4
+
1
v
?? -2v2?? -4
?? (11)=
1
v
11+2v18
+
1
v
11-2v18
=
1
3+v2
+
1
3-v2
=
3-v2
7
+
3+v2
7
=
6
7
.
 
Q6.  Find the domain of definition of ?? (?? )=
?????? ?? (?? +?? )
?? ?? +?? ?? +?? 
(a) (-?? ,8) 
(b) {-?? ,-?? } 
(c) (-?? ,8)-{-?? ,-?? } 
(d) (-8,8) 
Ans: (c) Here ?? (?? )=
log
2
 (?? +3)
?? 2
+3?? +2
=
log
2
 (?? +3)
(?? +1)(?? +2)
 exists if, 
Numerator ?? +3>0 ??? >-3 
and denominator (?? +1)(?? +2)?0??? ?-1,-2 
Thus, from (i) and (ii); we have domain of ?? (?? ) is (-3,8)-{-1,-2}. 
Q7. If the domain of function ?? (?? )=?? ?? -?? ?? +?? is (-8,8) , then the range of 
function is 
(a) (-8,8) 
(b) [-?? ,8) 
(c) (-?? ,?? ) 
(d) (-8,-?? ) 
Ans: (b)  ?? 2
-6?? +7=(?? -3)
2
-2 Obviously, minimum value is -2 and maximum 8. 
Q8.  The domain of the function v?????? (?? ?? -?? ?? +?? ) is 
(a) (-8,8) 
(b) (-8,?? -v?? )?(?? +v?? ,8) 
(c) (-8,?? ]?[?? ,8) 
(d) [?? ,8) 
Ans: (c) The function ?? (?? )=vlog (?? 2
-6?? +6) is defined when log (?? 2
-6?? +6)=0 
??? 2
-6?? +6=1?(?? -5)(?? -1)=0 
Page 3


Solved Examples on Functions 
JEE Mains 
Q1. If ?? (?? )=
?? -|?? |
|?? |
, then ?? (-?? )= 
(a) 1 
(b) -2 
(c) ?? 
(d) 2 
Ans: (b)  ?? (-1)=
-1-|-1|
|-1|
=
-1-1
1
=-2. 
Q2.  If ?? (?? )=?????? [
?? +?? ?? -?? ], then ?? [
?? ?? ?? +?? ?? ] is equal to 
(a) [?? (?? )]
?? 
(b) [?? (?? )]
?? 
(c) ?? ?? (?? ) 
(d) ?? ?? (?? ) 
Ans: (c) 
?? (?? )=log (
1+?? 1-?? )
 ??? (
2?? 1+?? 2
)=log [
1+
2?? 1+?? 2
1-
2?? 1+?? 2
]=log [
?? 2
+1+2?? ?? 2
+1-2?? ]=log [
1+?? 1-?? ]
2
=2log [
1+?? 1-?? ]=2?? (?? )
 
Q3. If ?? (?? )=?????? [?? ?? ]?? +?????? [-?? ?? ]?? , then 
(a) ?? (
?? ?? )=?? 
(b) ?? (-?? )=?? 
(c) ?? (?? )=?? 
(d) ?? (
?? ?? )=-?? 
Ans: (d) ?? (?? )=cos [?? 2
]?? +cos [-?? 2
]?? 
?? (?? )=cos (9?? )+cos (-10?? )=cos (9?? )+cos (10?? )=2cos (
19?? 2
)cos (
?? 2
) 
?? (
?? 2
)=2cos (
19?? 4
)cos (
?? 4
);?? (
?? 2
)=2×
-1
v2
×
1
v2
=-1. 
Q4.  If ?? :?? ??? satisfies ?? (?? +?? )=?? (?? )+?? (?? ) , for all ?? ,?? ??? and ?? (?? )=?? , then 
?
?? =?? ?? ??? (?? ) is 
(a) 
?? ?? ?? 
(b) 
?? (?? +?? )
?? 
(c) ?? ?? (?? +?? ) 
(d) 
?? ?? (?? +?? )
?? 
Ans: (d) ?? (?? +?? )=?? (?? )+?? (?? ) 
put ?? =1,?? =0 ??? (1)=?? (1)+?? (0)=7 
put ?? =1,?? =1 ??? (2)=2.?? (1)=2.7; similarly ?? (3)=3.7 and so on 
??
?? =1
?? ??? (?? )=7(1+2+3+?..+?? )=
7?? (?? +1)
2
. 
Q5. If ?? (?? )=
?? v
?? +?? v?? ?? -?? +
?? v
?? -?? v?? ?? -?? for ?? >?? , then ?? (???? )= 
(a) 
?? ?? 
(b) 
?? ?? 
(c) 
?? ?? 
(d) 
?? ?? 
Ans: (c) 
?? (?? )=
1
v
?? +2v2?? -4
+
1
v
?? -2v2?? -4
?? (11)=
1
v
11+2v18
+
1
v
11-2v18
=
1
3+v2
+
1
3-v2
=
3-v2
7
+
3+v2
7
=
6
7
.
 
Q6.  Find the domain of definition of ?? (?? )=
?????? ?? (?? +?? )
?? ?? +?? ?? +?? 
(a) (-?? ,8) 
(b) {-?? ,-?? } 
(c) (-?? ,8)-{-?? ,-?? } 
(d) (-8,8) 
Ans: (c) Here ?? (?? )=
log
2
 (?? +3)
?? 2
+3?? +2
=
log
2
 (?? +3)
(?? +1)(?? +2)
 exists if, 
Numerator ?? +3>0 ??? >-3 
and denominator (?? +1)(?? +2)?0??? ?-1,-2 
Thus, from (i) and (ii); we have domain of ?? (?? ) is (-3,8)-{-1,-2}. 
Q7. If the domain of function ?? (?? )=?? ?? -?? ?? +?? is (-8,8) , then the range of 
function is 
(a) (-8,8) 
(b) [-?? ,8) 
(c) (-?? ,?? ) 
(d) (-8,-?? ) 
Ans: (b)  ?? 2
-6?? +7=(?? -3)
2
-2 Obviously, minimum value is -2 and maximum 8. 
Q8.  The domain of the function v?????? (?? ?? -?? ?? +?? ) is 
(a) (-8,8) 
(b) (-8,?? -v?? )?(?? +v?? ,8) 
(c) (-8,?? ]?[?? ,8) 
(d) [?? ,8) 
Ans: (c) The function ?? (?? )=vlog (?? 2
-6?? +6) is defined when log (?? 2
-6?? +6)=0 
??? 2
-6?? +6=1?(?? -5)(?? -1)=0 
This inequality hold if ?? =1 or ?? =5. Hence, the domain of the function will be (-8,1]?
[5,8) . 
Q9.  The domain of definition of the function ?? (?? ) given by ?? ?? +?? ?? =?? is 
(a) (?? ,?? ] 
(b) [?? ,?? ] 
(c) (-8,?? ] 
(d) (-8,?? ) 
Ans: (d) 2
?? =2-2
?? 
?? is real if 2-2
?? =0?2>2
?? ?1>?? 
? ?? ?(-8,1) 
Q10. The domain of the function ?? (?? )=??????
?? +?? (?? ?? -?? ) is 
(a) (-?? ,-?? )?(?? ,8) 
(b) [-?? ,-?? )?[?? ,8) 
(c) (-?? ,-?? )?(-?? ,-?? )?(?? ,8) 
(d) [-?? ,-?? )?(-?? ,-?? )?[?? ,8] 
Solution: (c)  ?? (?? ) is to be defined when ?? 2
-1>0 
 ??? 2
>1,??? <-1 or ?? >1 and 3+?? >0
 ??? >-3 and ?? ?-2
 ??? ?? =(-3,-2)?(-2,-1)?(1,8).
 
Q11.  The range of 
?? +?? ?? ?? ?? is 
(a) (?? ,?? ) 
(b) (?? ,8) 
(c) [?? ,?? ] 
(d) [?? ,8) 
Ans: (b) Let ?? =
1+?? 2
?? 2
 ??? 2
?? =1+?? 2
??? 2
(?? -1)=1??? 2
=
1
?? -1
 
Now since, ?? 2
>0?
1
?? -1
>0?(?? -1)>0??? >1??? ?(1,8) 
Trick : ?? =
1+?? 2
?? 2
=1+
1
?? 2
. Now since, 
1
?? 2
 is always >0??? >1??? ?(1,8) . 
Q12.If ?? (?? )=?? ?????? (???? +?? )+?? , then range of ?? (?? ) is 
(a) [?? +?? ,?? +?? ?? ] 
(b) [?? -?? ,?? +?? ] 
(c) [?? +?? ,?? -?? ] 
Ans:  (a) [?? +?? ,?? +2?? ] 
?? (?? )=?? cos (???? +?? )+?? 
For minimum cos (???? +?? )=-1 
from (i), ?? (?? )=-?? +?? =(?? -?? ) , 
for maximum cos (???? +?? )=1 
from (i), ?? (?? )=?? +?? =(?? +?? ) 
? Range of ?? (?? )=[?? -?? ,?? +?? ]. 
Q12. Range of the function ?? (?? )=
?? ?? +?? +?? ?? ?? +?? +?? ;?? ??? is 
(a) (?? ,8) 
(b) (?? ,???? /?? ) 
Page 4


Solved Examples on Functions 
JEE Mains 
Q1. If ?? (?? )=
?? -|?? |
|?? |
, then ?? (-?? )= 
(a) 1 
(b) -2 
(c) ?? 
(d) 2 
Ans: (b)  ?? (-1)=
-1-|-1|
|-1|
=
-1-1
1
=-2. 
Q2.  If ?? (?? )=?????? [
?? +?? ?? -?? ], then ?? [
?? ?? ?? +?? ?? ] is equal to 
(a) [?? (?? )]
?? 
(b) [?? (?? )]
?? 
(c) ?? ?? (?? ) 
(d) ?? ?? (?? ) 
Ans: (c) 
?? (?? )=log (
1+?? 1-?? )
 ??? (
2?? 1+?? 2
)=log [
1+
2?? 1+?? 2
1-
2?? 1+?? 2
]=log [
?? 2
+1+2?? ?? 2
+1-2?? ]=log [
1+?? 1-?? ]
2
=2log [
1+?? 1-?? ]=2?? (?? )
 
Q3. If ?? (?? )=?????? [?? ?? ]?? +?????? [-?? ?? ]?? , then 
(a) ?? (
?? ?? )=?? 
(b) ?? (-?? )=?? 
(c) ?? (?? )=?? 
(d) ?? (
?? ?? )=-?? 
Ans: (d) ?? (?? )=cos [?? 2
]?? +cos [-?? 2
]?? 
?? (?? )=cos (9?? )+cos (-10?? )=cos (9?? )+cos (10?? )=2cos (
19?? 2
)cos (
?? 2
) 
?? (
?? 2
)=2cos (
19?? 4
)cos (
?? 4
);?? (
?? 2
)=2×
-1
v2
×
1
v2
=-1. 
Q4.  If ?? :?? ??? satisfies ?? (?? +?? )=?? (?? )+?? (?? ) , for all ?? ,?? ??? and ?? (?? )=?? , then 
?
?? =?? ?? ??? (?? ) is 
(a) 
?? ?? ?? 
(b) 
?? (?? +?? )
?? 
(c) ?? ?? (?? +?? ) 
(d) 
?? ?? (?? +?? )
?? 
Ans: (d) ?? (?? +?? )=?? (?? )+?? (?? ) 
put ?? =1,?? =0 ??? (1)=?? (1)+?? (0)=7 
put ?? =1,?? =1 ??? (2)=2.?? (1)=2.7; similarly ?? (3)=3.7 and so on 
??
?? =1
?? ??? (?? )=7(1+2+3+?..+?? )=
7?? (?? +1)
2
. 
Q5. If ?? (?? )=
?? v
?? +?? v?? ?? -?? +
?? v
?? -?? v?? ?? -?? for ?? >?? , then ?? (???? )= 
(a) 
?? ?? 
(b) 
?? ?? 
(c) 
?? ?? 
(d) 
?? ?? 
Ans: (c) 
?? (?? )=
1
v
?? +2v2?? -4
+
1
v
?? -2v2?? -4
?? (11)=
1
v
11+2v18
+
1
v
11-2v18
=
1
3+v2
+
1
3-v2
=
3-v2
7
+
3+v2
7
=
6
7
.
 
Q6.  Find the domain of definition of ?? (?? )=
?????? ?? (?? +?? )
?? ?? +?? ?? +?? 
(a) (-?? ,8) 
(b) {-?? ,-?? } 
(c) (-?? ,8)-{-?? ,-?? } 
(d) (-8,8) 
Ans: (c) Here ?? (?? )=
log
2
 (?? +3)
?? 2
+3?? +2
=
log
2
 (?? +3)
(?? +1)(?? +2)
 exists if, 
Numerator ?? +3>0 ??? >-3 
and denominator (?? +1)(?? +2)?0??? ?-1,-2 
Thus, from (i) and (ii); we have domain of ?? (?? ) is (-3,8)-{-1,-2}. 
Q7. If the domain of function ?? (?? )=?? ?? -?? ?? +?? is (-8,8) , then the range of 
function is 
(a) (-8,8) 
(b) [-?? ,8) 
(c) (-?? ,?? ) 
(d) (-8,-?? ) 
Ans: (b)  ?? 2
-6?? +7=(?? -3)
2
-2 Obviously, minimum value is -2 and maximum 8. 
Q8.  The domain of the function v?????? (?? ?? -?? ?? +?? ) is 
(a) (-8,8) 
(b) (-8,?? -v?? )?(?? +v?? ,8) 
(c) (-8,?? ]?[?? ,8) 
(d) [?? ,8) 
Ans: (c) The function ?? (?? )=vlog (?? 2
-6?? +6) is defined when log (?? 2
-6?? +6)=0 
??? 2
-6?? +6=1?(?? -5)(?? -1)=0 
This inequality hold if ?? =1 or ?? =5. Hence, the domain of the function will be (-8,1]?
[5,8) . 
Q9.  The domain of definition of the function ?? (?? ) given by ?? ?? +?? ?? =?? is 
(a) (?? ,?? ] 
(b) [?? ,?? ] 
(c) (-8,?? ] 
(d) (-8,?? ) 
Ans: (d) 2
?? =2-2
?? 
?? is real if 2-2
?? =0?2>2
?? ?1>?? 
? ?? ?(-8,1) 
Q10. The domain of the function ?? (?? )=??????
?? +?? (?? ?? -?? ) is 
(a) (-?? ,-?? )?(?? ,8) 
(b) [-?? ,-?? )?[?? ,8) 
(c) (-?? ,-?? )?(-?? ,-?? )?(?? ,8) 
(d) [-?? ,-?? )?(-?? ,-?? )?[?? ,8] 
Solution: (c)  ?? (?? ) is to be defined when ?? 2
-1>0 
 ??? 2
>1,??? <-1 or ?? >1 and 3+?? >0
 ??? >-3 and ?? ?-2
 ??? ?? =(-3,-2)?(-2,-1)?(1,8).
 
Q11.  The range of 
?? +?? ?? ?? ?? is 
(a) (?? ,?? ) 
(b) (?? ,8) 
(c) [?? ,?? ] 
(d) [?? ,8) 
Ans: (b) Let ?? =
1+?? 2
?? 2
 ??? 2
?? =1+?? 2
??? 2
(?? -1)=1??? 2
=
1
?? -1
 
Now since, ?? 2
>0?
1
?? -1
>0?(?? -1)>0??? >1??? ?(1,8) 
Trick : ?? =
1+?? 2
?? 2
=1+
1
?? 2
. Now since, 
1
?? 2
 is always >0??? >1??? ?(1,8) . 
Q12.If ?? (?? )=?? ?????? (???? +?? )+?? , then range of ?? (?? ) is 
(a) [?? +?? ,?? +?? ?? ] 
(b) [?? -?? ,?? +?? ] 
(c) [?? +?? ,?? -?? ] 
Ans:  (a) [?? +?? ,?? +2?? ] 
?? (?? )=?? cos (???? +?? )+?? 
For minimum cos (???? +?? )=-1 
from (i), ?? (?? )=-?? +?? =(?? -?? ) , 
for maximum cos (???? +?? )=1 
from (i), ?? (?? )=?? +?? =(?? +?? ) 
? Range of ?? (?? )=[?? -?? ,?? +?? ]. 
Q12. Range of the function ?? (?? )=
?? ?? +?? +?? ?? ?? +?? +?? ;?? ??? is 
(a) (?? ,8) 
(b) (?? ,???? /?? ) 
(c) (?? ,?? /?? ] 
(d) (?? ,?? /?? ] 
Ans: (c)  ?? (?? )=1+
1
(?? +
1
2
)
2
+
3
4
? Range =(1,7/3]. 
Q13.  Let ?? :?? ??? be a function defined by ?? (?? )=
?? -?? ?? -?? , where ?? ??? . Then 
(a) ?? is one-one onto 
(b) ?? is one-one into 
(c) ?? is many one onto 
(d) ?? is many one into 
Ans: (b) For any ?? ,?? ??? , we have 
?? (?? )=?? (?? )?
?? -?? ?? -?? =
?? -?? ?? -?? ??? =?? 
??? is one-one 
Let ?? ??? such that ?? (?? )=?? ?
?? -?? ?? -?? =?? ??? =
?? -????
1-?? 
Clearly ?? ??? for ?? =1. So, ?? is not onto. 
Q14.  Let ?? (?? )=v?? ?? +???? , then the graph of the function ?? =?? (?? ) is symmetrical 
about 
(a) The ?? -axis 
(b) The ?? -axis 
(c) The origin 
(d) The line ?? =?? 
Ans: (b) ?? (?? )=v?? 4
+15??? (-?? )=v(-?? )
4
+15=v?? 4
+15=?? (?? ) 
??? (-?? )=?? (?? )??? (?? ) is an even function ??? (?? ) is symmetric about y-axis. 
Q15.  The function ?? (?? )=?????? (?????? (?? +v?? ?? +?? )) is 
(a) Even function 
(b) Odd function 
(c) Neither even nor odd  
(d) Periodic function 
Ans: (b)  ?? (?? )=sin (log (?? +v1+?? 2
)) 
 ??? (-?? )=sin [log (-?? +v1+?? 2
)]??? (-?? )=sin log ((v1+?? 2
-?? )
(v1+?? 2
+?? )
(v1+?? 2
+?? )
)
 ??? (-?? )=sin log [
1
(?? +v1+?? 2
)
]??? (-?? )=sin [log (?? +v1+?? 2
)
-1
]
 ??? (-?? )=sin [-log (?? +v1+?? 2
)]??? (-?? )=-sin [log (?? +v1+?? 2
)]??? (-?? )=-?? (?? )
 ??? (?? ) is odd function. 
 
 
Page 5


Solved Examples on Functions 
JEE Mains 
Q1. If ?? (?? )=
?? -|?? |
|?? |
, then ?? (-?? )= 
(a) 1 
(b) -2 
(c) ?? 
(d) 2 
Ans: (b)  ?? (-1)=
-1-|-1|
|-1|
=
-1-1
1
=-2. 
Q2.  If ?? (?? )=?????? [
?? +?? ?? -?? ], then ?? [
?? ?? ?? +?? ?? ] is equal to 
(a) [?? (?? )]
?? 
(b) [?? (?? )]
?? 
(c) ?? ?? (?? ) 
(d) ?? ?? (?? ) 
Ans: (c) 
?? (?? )=log (
1+?? 1-?? )
 ??? (
2?? 1+?? 2
)=log [
1+
2?? 1+?? 2
1-
2?? 1+?? 2
]=log [
?? 2
+1+2?? ?? 2
+1-2?? ]=log [
1+?? 1-?? ]
2
=2log [
1+?? 1-?? ]=2?? (?? )
 
Q3. If ?? (?? )=?????? [?? ?? ]?? +?????? [-?? ?? ]?? , then 
(a) ?? (
?? ?? )=?? 
(b) ?? (-?? )=?? 
(c) ?? (?? )=?? 
(d) ?? (
?? ?? )=-?? 
Ans: (d) ?? (?? )=cos [?? 2
]?? +cos [-?? 2
]?? 
?? (?? )=cos (9?? )+cos (-10?? )=cos (9?? )+cos (10?? )=2cos (
19?? 2
)cos (
?? 2
) 
?? (
?? 2
)=2cos (
19?? 4
)cos (
?? 4
);?? (
?? 2
)=2×
-1
v2
×
1
v2
=-1. 
Q4.  If ?? :?? ??? satisfies ?? (?? +?? )=?? (?? )+?? (?? ) , for all ?? ,?? ??? and ?? (?? )=?? , then 
?
?? =?? ?? ??? (?? ) is 
(a) 
?? ?? ?? 
(b) 
?? (?? +?? )
?? 
(c) ?? ?? (?? +?? ) 
(d) 
?? ?? (?? +?? )
?? 
Ans: (d) ?? (?? +?? )=?? (?? )+?? (?? ) 
put ?? =1,?? =0 ??? (1)=?? (1)+?? (0)=7 
put ?? =1,?? =1 ??? (2)=2.?? (1)=2.7; similarly ?? (3)=3.7 and so on 
??
?? =1
?? ??? (?? )=7(1+2+3+?..+?? )=
7?? (?? +1)
2
. 
Q5. If ?? (?? )=
?? v
?? +?? v?? ?? -?? +
?? v
?? -?? v?? ?? -?? for ?? >?? , then ?? (???? )= 
(a) 
?? ?? 
(b) 
?? ?? 
(c) 
?? ?? 
(d) 
?? ?? 
Ans: (c) 
?? (?? )=
1
v
?? +2v2?? -4
+
1
v
?? -2v2?? -4
?? (11)=
1
v
11+2v18
+
1
v
11-2v18
=
1
3+v2
+
1
3-v2
=
3-v2
7
+
3+v2
7
=
6
7
.
 
Q6.  Find the domain of definition of ?? (?? )=
?????? ?? (?? +?? )
?? ?? +?? ?? +?? 
(a) (-?? ,8) 
(b) {-?? ,-?? } 
(c) (-?? ,8)-{-?? ,-?? } 
(d) (-8,8) 
Ans: (c) Here ?? (?? )=
log
2
 (?? +3)
?? 2
+3?? +2
=
log
2
 (?? +3)
(?? +1)(?? +2)
 exists if, 
Numerator ?? +3>0 ??? >-3 
and denominator (?? +1)(?? +2)?0??? ?-1,-2 
Thus, from (i) and (ii); we have domain of ?? (?? ) is (-3,8)-{-1,-2}. 
Q7. If the domain of function ?? (?? )=?? ?? -?? ?? +?? is (-8,8) , then the range of 
function is 
(a) (-8,8) 
(b) [-?? ,8) 
(c) (-?? ,?? ) 
(d) (-8,-?? ) 
Ans: (b)  ?? 2
-6?? +7=(?? -3)
2
-2 Obviously, minimum value is -2 and maximum 8. 
Q8.  The domain of the function v?????? (?? ?? -?? ?? +?? ) is 
(a) (-8,8) 
(b) (-8,?? -v?? )?(?? +v?? ,8) 
(c) (-8,?? ]?[?? ,8) 
(d) [?? ,8) 
Ans: (c) The function ?? (?? )=vlog (?? 2
-6?? +6) is defined when log (?? 2
-6?? +6)=0 
??? 2
-6?? +6=1?(?? -5)(?? -1)=0 
This inequality hold if ?? =1 or ?? =5. Hence, the domain of the function will be (-8,1]?
[5,8) . 
Q9.  The domain of definition of the function ?? (?? ) given by ?? ?? +?? ?? =?? is 
(a) (?? ,?? ] 
(b) [?? ,?? ] 
(c) (-8,?? ] 
(d) (-8,?? ) 
Ans: (d) 2
?? =2-2
?? 
?? is real if 2-2
?? =0?2>2
?? ?1>?? 
? ?? ?(-8,1) 
Q10. The domain of the function ?? (?? )=??????
?? +?? (?? ?? -?? ) is 
(a) (-?? ,-?? )?(?? ,8) 
(b) [-?? ,-?? )?[?? ,8) 
(c) (-?? ,-?? )?(-?? ,-?? )?(?? ,8) 
(d) [-?? ,-?? )?(-?? ,-?? )?[?? ,8] 
Solution: (c)  ?? (?? ) is to be defined when ?? 2
-1>0 
 ??? 2
>1,??? <-1 or ?? >1 and 3+?? >0
 ??? >-3 and ?? ?-2
 ??? ?? =(-3,-2)?(-2,-1)?(1,8).
 
Q11.  The range of 
?? +?? ?? ?? ?? is 
(a) (?? ,?? ) 
(b) (?? ,8) 
(c) [?? ,?? ] 
(d) [?? ,8) 
Ans: (b) Let ?? =
1+?? 2
?? 2
 ??? 2
?? =1+?? 2
??? 2
(?? -1)=1??? 2
=
1
?? -1
 
Now since, ?? 2
>0?
1
?? -1
>0?(?? -1)>0??? >1??? ?(1,8) 
Trick : ?? =
1+?? 2
?? 2
=1+
1
?? 2
. Now since, 
1
?? 2
 is always >0??? >1??? ?(1,8) . 
Q12.If ?? (?? )=?? ?????? (???? +?? )+?? , then range of ?? (?? ) is 
(a) [?? +?? ,?? +?? ?? ] 
(b) [?? -?? ,?? +?? ] 
(c) [?? +?? ,?? -?? ] 
Ans:  (a) [?? +?? ,?? +2?? ] 
?? (?? )=?? cos (???? +?? )+?? 
For minimum cos (???? +?? )=-1 
from (i), ?? (?? )=-?? +?? =(?? -?? ) , 
for maximum cos (???? +?? )=1 
from (i), ?? (?? )=?? +?? =(?? +?? ) 
? Range of ?? (?? )=[?? -?? ,?? +?? ]. 
Q12. Range of the function ?? (?? )=
?? ?? +?? +?? ?? ?? +?? +?? ;?? ??? is 
(a) (?? ,8) 
(b) (?? ,???? /?? ) 
(c) (?? ,?? /?? ] 
(d) (?? ,?? /?? ] 
Ans: (c)  ?? (?? )=1+
1
(?? +
1
2
)
2
+
3
4
? Range =(1,7/3]. 
Q13.  Let ?? :?? ??? be a function defined by ?? (?? )=
?? -?? ?? -?? , where ?? ??? . Then 
(a) ?? is one-one onto 
(b) ?? is one-one into 
(c) ?? is many one onto 
(d) ?? is many one into 
Ans: (b) For any ?? ,?? ??? , we have 
?? (?? )=?? (?? )?
?? -?? ?? -?? =
?? -?? ?? -?? ??? =?? 
??? is one-one 
Let ?? ??? such that ?? (?? )=?? ?
?? -?? ?? -?? =?? ??? =
?? -????
1-?? 
Clearly ?? ??? for ?? =1. So, ?? is not onto. 
Q14.  Let ?? (?? )=v?? ?? +???? , then the graph of the function ?? =?? (?? ) is symmetrical 
about 
(a) The ?? -axis 
(b) The ?? -axis 
(c) The origin 
(d) The line ?? =?? 
Ans: (b) ?? (?? )=v?? 4
+15??? (-?? )=v(-?? )
4
+15=v?? 4
+15=?? (?? ) 
??? (-?? )=?? (?? )??? (?? ) is an even function ??? (?? ) is symmetric about y-axis. 
Q15.  The function ?? (?? )=?????? (?????? (?? +v?? ?? +?? )) is 
(a) Even function 
(b) Odd function 
(c) Neither even nor odd  
(d) Periodic function 
Ans: (b)  ?? (?? )=sin (log (?? +v1+?? 2
)) 
 ??? (-?? )=sin [log (-?? +v1+?? 2
)]??? (-?? )=sin log ((v1+?? 2
-?? )
(v1+?? 2
+?? )
(v1+?? 2
+?? )
)
 ??? (-?? )=sin log [
1
(?? +v1+?? 2
)
]??? (-?? )=sin [log (?? +v1+?? 2
)
-1
]
 ??? (-?? )=sin [-log (?? +v1+?? 2
)]??? (-?? )=-sin [log (?? +v1+?? 2
)]??? (-?? )=-?? (?? )
 ??? (?? ) is odd function. 
 
 
Q16.  The function ?? (?? )=?????? 
????
?? +???????? 
????
?? -?????? 
????
?? is periodic with period 
(a) 6 
(b) 3 
(c) 4 
(d) 12 
Ans: (d) ?sin ?? has period =2?? ?sin 
????
2
 has period =
2?? ?? 2
=4 
 ?cos ?? has period =2?? ?cos 
????
3
 has period =
2?? ?? 3
=6?2cos 
????
3
 has period =6
 ?tan ?? has period =?? ?tan 
????
4
 has period =
?? ?? 4
=4.
 
L.C.M. of 4,6 and 4=12, period of ?? (?? )=12. 
 
Q17.  The period of the function ?? (?? )=?????? ?? ?? is 
(a) 
?? ?? 
(b) ?? 
(c) ?? ?? 
(d) None of these 
Ans: (b) sin
2
 ?? =
1-cos 2?? 2
? Period =
2?? 2
=?? . 
Q18. If ?? (?? )=?? ?? +?? -?? and 
?? ?? (?? °?? )(?? )=?? ?? ?? -?? ?? +?? , then ?? (?? ) is equal to 
(a) ?? ?? -?? 
(b) ?? ?? +?? 
(c) ?? ?? ?? +?? ?? +?? 
(d) ?? ?? ?? -?? ?? -?? 
Ans: (a) ?? (?? )=?? 2
+?? -2?(?? °?? )(?? )=?? [?? (?? )]=[?? (?? )]
2
+?? (?? )-2 
Given, 
1
2
(?? °?? )(?? )=2?? 2
-5?? +2 ? 
1
2
[?? (?? )]
2
+
1
2
?? (?? )-1=2?? 2
-5?? +2 
?[?? (?? )]
2
+?? (?? )=4?? 2
-10?? +6??? (?? )[?? (?? )+1]=(2?? -3)[(2?? -3)+1]??? (?? )=2?? -
3. 
Q19.If ?? (?? )=
?? ?? -?? ?? -?? , then [?? {?? (?? )}] equals 
(a) ?? 
(b)-?? 
 (c) 
?? ?? 
(d)-
?? ?? 
Ans: (a) ?? [?? (?? )]=
2(
2?? -3
?? -2
)-3
(
2?? -3
?? -2
)-2
=?? 
Q20.  Suppose that ?? (?? )=?? +v?? and ?? (?? (?? ))=?? +?? v?? +?? , then ?? (?? ) is 
(a) ?? +?? ?? ?? 
(b) ?? +?? ?? 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

Semester Notes

,

Function Solved Examples | Mathematics (Maths) for JEE Main & Advanced

,

mock tests for examination

,

Summary

,

Sample Paper

,

Viva Questions

,

Extra Questions

,

study material

,

shortcuts and tricks

,

Important questions

,

Objective type Questions

,

video lectures

,

practice quizzes

,

Function Solved Examples | Mathematics (Maths) for JEE Main & Advanced

,

Previous Year Questions with Solutions

,

past year papers

,

MCQs

,

Exam

,

ppt

,

Free

,

Function Solved Examples | Mathematics (Maths) for JEE Main & Advanced

;