SSC CGL Exam  >  SSC CGL Notes  >  Quantitative Aptitude for SSC CGL  >  Graph of Linear Equations in Two Variables

Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL PDF Download

Linear equations are the first-order equations, i.e. the equations of degree 1. The equations which are used to define any straight line are linear, they are represented as,
x + k = 0;
These equations have a unique solution and can be represented on number lines very easily. Let’s look at linear equations in two variables, how they are represented, their graphs, and their solutions.
A linear equation in two variables is represented as,
ax + by = c,
Where a, b, and c are real numbers.

For example: 3x + 5y = 6 is an example of linear equation in two variables.


Solution of a Linear equation
Solutions of the linear equations are the points (x, y) that satisfy the given equation. Let’s see it with an example
x + y = 4
We will study the solutions to this equation.
x = 2 and y = 2 is a solution to this equation, so is x = 0 and y = 4 and (4, 0). We have got three points that satisfy this equation. But there are more than three points. For every value of x or for the value of y, we might get a value of the other variable. This shows that there infinitely many possible solutions to this equation.
So, a linear equation in two variables has infinitely many solutions. If we plot these solutions on a graph, how do they look? Let’s see the graphs of the linear equations.
The equations presented in the introduction, that is linear equations in one variable can also be represented in this form. 


Let’s see it through an example

Question 1: Represent the following linear equation in one variable as a standard two-variable linear equation.
x + 6 = 0
Answer:
We need to bring it in the standard two variable linear equation form,
ax + by + c = 0
x + 6 = 0
Can be re-written as,
1.x + 0.y + 6 = 0.
Now we need to look at how to formulate these equations in real-life.

Question 2: Eric and Kyle go to a Halloween candy shop to buy some candies for “trick or treat” on Halloween. Eric buys 6 cola candies and Kyle buys 10 sour-sweet tooth candy. Shopkeeper asks for Rs 150 for all the candies. Formulate an equation for this situation to find out the cost of Cola and Sour-Sweet candy.
Answer:
Let’s say cost of Cola candy is “x” and cost of “Sour-Sweet” candy is “y”. Notice that problem has two variables, so we will have to formulate linear equation in two variables to represent this equation.
Cost of 6 cola candies = 6x,
Cost of 10 Sour-Sweet candies = 10y
Total Cost = Cost of 6 cola candies. + Cost of 10 Sour-sweet Candies.
150 = 6x + 10y
Thus, this is our required equation. 


Graphs of the Linear Equation
Graphs for linear equations are drawn to obtain the straight lines, they are drawn with the help of coordinates of both the axis, getting such pairs on the graph and trying to create a pattern out of it gives us the straight lines. In the given linear equation, put different values of x in order to get different values of y, say, the pairs obtained are (x1, y1), (x2, y2), (x3, y3)…and so on. Now plot these points on the graph to get the straight line. 


Plotting the points
Following are the steps to plot points on the graph:
Step 1: Pick different values of x
Step 2: Substitute those values in the given equation to solve for the values of y
Step 3: Plot the obtained respective pairs on the graph
Step 4: Obtaining such pairs (at least two or more than two) would help us identify how the straight line goes.


Finding X and Y Intercepts
Following are the steps to find x and y-intercepts:
Step 1: In order to find y-intercept, set x = 0, and solve for the value of y
Step 2: In order to find x-intercept, set y =0, and solve for the value of x
Step 3: Plot both the point on the graph and join them with a straight line.


Sample Problems
Question 1: Plot the graph of the equation,
x + y = 4
Solution:
Let’s list out the solutions of this equation.
x    0    1    2    3    4    5    
y    4    3    2    1    0    -1    
If we keep on listing these solutions, we will see that they form a straight line. Let’s plot that line of the graph.
Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL


Question 2: Plot the graph of the equation,
2x – 4y = 12
Solution: Let’s list out the solutions to this equation,
x    0    1    2    3    4
y    -3    -2.5    -2    -1.5    -1

We can join any of two these points to get the line.
Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL

Let’s see some examples for linear equations which are parallel to x-axis and y-axis.

Question 3: Plot the graph of the following equation.
y = 6
Solution: 
The equation when written in the form of linear equation in two variables.
0.x + 1.y = 6
We can see that it doesn’t matter what value of “x” we put in, it won’t affect the equation. So, to satisfy the equation value of “y” must be 6. Thus, our solution must have y = 6 and any other value of “x” will work.
So, the graph will look like this,
Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL

Notice that this graph is parallel to x -axis.

Question 4: Plot the graph of the following equation.
x = 7
Solution: Similar to above question, this equation can be represented as.
1.x + 0.y = 7
Here, value of “y” doesn’t matter and the value of “x” must be 7.
So, plotting this on the graph.
Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL

Thus, this is graph for x = 4.
Note: In general for any equation x = k, the graph will always be parallel to the y-axis. Similarly, the equation for y = k, the graph will always be parallel to the x-axis.

The document Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL is a part of the SSC CGL Course Quantitative Aptitude for SSC CGL.
All you need of SSC CGL at this link: SSC CGL
314 videos|170 docs|185 tests

Top Courses for SSC CGL

FAQs on Graph of Linear Equations in Two Variables - Quantitative Aptitude for SSC CGL

1. What are linear equations in two variables?
Ans. Linear equations in two variables are algebraic equations that involve two variables, typically represented by x and y, and have a degree of 1. These equations can be graphed on a coordinate plane, resulting in a straight line.
2. How can I graph a linear equation in two variables?
Ans. To graph a linear equation in two variables, start by rearranging the equation in slope-intercept form, y = mx + b, where m represents the slope and b represents the y-intercept. Then, plot the y-intercept on the coordinate plane and use the slope to find additional points on the line. Finally, connect the points to form a straight line.
3. What does the slope of a linear equation represent?
Ans. The slope of a linear equation represents the rate of change between the two variables. It indicates how much y changes for every one unit change in x. A positive slope indicates an upward slope, while a negative slope indicates a downward slope. A slope of zero represents a horizontal line.
4. How can I determine the solution to a system of linear equations graphically?
Ans. To determine the solution to a system of linear equations graphically, plot the lines representing each equation on the same coordinate plane. The point of intersection between the lines represents the solution to the system. If the lines are parallel and do not intersect, the system has no solution. If the lines coincide and overlap, the system has infinitely many solutions.
5. Can a linear equation in two variables have more than one solution?
Ans. No, a linear equation in two variables can have either one unique solution, no solution, or infinitely many solutions. If the equation represents a line that intersects the coordinate plane at exactly one point, it has a unique solution. If the line is parallel to the coordinate plane, it has no solution. If the line coincides with the coordinate plane, it has infinitely many solutions.
314 videos|170 docs|185 tests
Download as PDF
Explore Courses for SSC CGL exam

Top Courses for SSC CGL

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

study material

,

Important questions

,

Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL

,

Summary

,

video lectures

,

MCQs

,

Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL

,

Exam

,

Semester Notes

,

Objective type Questions

,

Extra Questions

,

shortcuts and tricks

,

mock tests for examination

,

past year papers

,

practice quizzes

,

Free

,

ppt

,

Graph of Linear Equations in Two Variables | Quantitative Aptitude for SSC CGL

,

pdf

,

Previous Year Questions with Solutions

,

Viva Questions

,

Sample Paper

;