| Download, print and study this document offline |
Page 1
ELECTROCHEMISTRY
ELECTRODE POTENTIAL
For any electrode ? oxidiation potential = ? Reduction potential
E
cell
= R.P of cathode ? R.P of anode
E
cell
= R.P. of cathode + O.P of anode
E
cell
is always a +ve quantity & Anode will be electrode of low R.P
Eº
Cell
= SRP of cathode ? SRP of anode.
? Greater the SRP value greater will be oxidising power.
GIBBS FREE ENERGY CHANGE :
?G = ? nFE
cell
?Gº = ? nFEº
cell
NERNST EQUATION : (Effect of concentration and temp on emf of cell)
?G = ?Gº + RT ?nQ (where Q is raection quotient)
?Gº = ? RT ?n K
eq
E
cell
= Eº
cell
?
nF
RT
?n Q
E
cell
= Eº
cell
? Q log
nF
RT 303 . 2
Page 2
ELECTROCHEMISTRY
ELECTRODE POTENTIAL
For any electrode ? oxidiation potential = ? Reduction potential
E
cell
= R.P of cathode ? R.P of anode
E
cell
= R.P. of cathode + O.P of anode
E
cell
is always a +ve quantity & Anode will be electrode of low R.P
Eº
Cell
= SRP of cathode ? SRP of anode.
? Greater the SRP value greater will be oxidising power.
GIBBS FREE ENERGY CHANGE :
?G = ? nFE
cell
?Gº = ? nFEº
cell
NERNST EQUATION : (Effect of concentration and temp on emf of cell)
?G = ?Gº + RT ?nQ (where Q is raection quotient)
?Gº = ? RT ?n K
eq
E
cell
= Eº
cell
?
nF
RT
?n Q
E
cell
= Eº
cell
? Q log
nF
RT 303 . 2
E
cell
= Eº
cell
?
n
0591 . 0
log Q [At 298 K]
At chemical equilibrium
?G = 0 ; E
cell
= 0.
? log K
eq
=
0591 . 0
E n
o
cell
.
Eº
cell
=
n
0591 . 0
log K
eq
For an electrode M(s)/M
n+
.
nF
RT 303 . 2
º E E
M / M M / M
n n ? ? ? ? log
] M [
1
n?
.
CONCENTRATION CELL :
A cell in which both the electrods are made up of same material.
For all concentration cell Eº
cell
= 0.
(a) Electrolyte Concentration Cell :
eg. Zn(s) / Zn
2+
(c
1
) || Zn
2+
(c
2
) / Zn(s)
E =
2
0591 . 0
log
1
2
C
C
(b) Electrode Concentration Cell :
eg. Pt, H
2
(P
1
atm) / H
+
(1M) / H
2
(P
2
atm) / Pt
E =
2
0591 . 0
log ?
?
?
?
?
?
?
?
2
1
P
P
DIFFERENT TYPES OF ELECTRODES :
1. Metal-Metal ion Electrode M(s)/M
n+
. M
n+
+ ne
?
?? ? M(s)
E = Eº +
n
0591 . 0
log[M
n+
]
2. Gas-ion Electrode Pt /H
2
(Patm) /H
+
(XM)
as a reduction electrode
H
+
(aq) + e
?
?? ?
2
1
H
2
(Patm)
E = Eº ? 0.0591 log
] H [
P 2
1
H
2
?
Page 3
ELECTROCHEMISTRY
ELECTRODE POTENTIAL
For any electrode ? oxidiation potential = ? Reduction potential
E
cell
= R.P of cathode ? R.P of anode
E
cell
= R.P. of cathode + O.P of anode
E
cell
is always a +ve quantity & Anode will be electrode of low R.P
Eº
Cell
= SRP of cathode ? SRP of anode.
? Greater the SRP value greater will be oxidising power.
GIBBS FREE ENERGY CHANGE :
?G = ? nFE
cell
?Gº = ? nFEº
cell
NERNST EQUATION : (Effect of concentration and temp on emf of cell)
?G = ?Gº + RT ?nQ (where Q is raection quotient)
?Gº = ? RT ?n K
eq
E
cell
= Eº
cell
?
nF
RT
?n Q
E
cell
= Eº
cell
? Q log
nF
RT 303 . 2
E
cell
= Eº
cell
?
n
0591 . 0
log Q [At 298 K]
At chemical equilibrium
?G = 0 ; E
cell
= 0.
? log K
eq
=
0591 . 0
E n
o
cell
.
Eº
cell
=
n
0591 . 0
log K
eq
For an electrode M(s)/M
n+
.
nF
RT 303 . 2
º E E
M / M M / M
n n ? ? ? ? log
] M [
1
n?
.
CONCENTRATION CELL :
A cell in which both the electrods are made up of same material.
For all concentration cell Eº
cell
= 0.
(a) Electrolyte Concentration Cell :
eg. Zn(s) / Zn
2+
(c
1
) || Zn
2+
(c
2
) / Zn(s)
E =
2
0591 . 0
log
1
2
C
C
(b) Electrode Concentration Cell :
eg. Pt, H
2
(P
1
atm) / H
+
(1M) / H
2
(P
2
atm) / Pt
E =
2
0591 . 0
log ?
?
?
?
?
?
?
?
2
1
P
P
DIFFERENT TYPES OF ELECTRODES :
1. Metal-Metal ion Electrode M(s)/M
n+
. M
n+
+ ne
?
?? ? M(s)
E = Eº +
n
0591 . 0
log[M
n+
]
2. Gas-ion Electrode Pt /H
2
(Patm) /H
+
(XM)
as a reduction electrode
H
+
(aq) + e
?
?? ?
2
1
H
2
(Patm)
E = Eº ? 0.0591 log
] H [
P 2
1
H
2
?
3. Oxidation-reduction Electrode Pt / Fe
2+
, Fe
3+
as a reduction electrode Fe
3+
+ e
?
?? ? Fe
2+
E = Eº ? 0.0591 log
] Fe [
] Fe [
3
2
?
?
4. Metal-Metal insoluble salt Electrode eg. Ag/AgCl, Cl
?
as a reduction electrode AgCl(s) + e
?
?? ? Ag(s) + Cl
?
Ag / AgCl / Cl
E ?
=
Ag / AgCl
0
/ Cl
E ?
? 0.0591 log [Cl
?
].
ELECTROLYSIS :
(a) K
+
, Ca
+2
, Na
+
, Mg
+2
, Al
+3
, Zn
+2
, Fe
+2
, H
+
, Cu
+2
, Ag
+
, Au
+3
.
Increasing order of deposition.
(b) Similarly the anion which is strogner reducing agent(low value of SRP)
is liberated first at the anode.
diposition of order g sin Increa
, Br , Cl , OH , NO , SO
? ? ? ?
3
? 2
4
? ? ? ? ? ? ? ? ? ? ? ?
?
I
FARADAY?S LAW OF ELECTROLYSIS :
First Law :
w = zq w = Z it Z = Electrochemical equivalent of substance
Second Law :
W ? E
E
W
= constant
..........
E
W
E
W
2
2
1
1
? ?
96500
factor efficiency current t i
E
W ? ?
?
.
Current efficiency =
100
produced deposited/ mass l Theoritica
produced deposited/ mass actual
?
CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu & Fe AT CATHODE
Cu / Cu
2 º E ?
2
0591 . 0
? log
? 2
Cu
1
=
Fe / Fe
2 º E ? ?
2
0591 . 0
log
? 2
Fe
1
Condition for the simultaneous deposition of Cu & Fe on cathode.
CONDUCTANCE :
? Conductance =
ce tan sis Re
1
Page 4
ELECTROCHEMISTRY
ELECTRODE POTENTIAL
For any electrode ? oxidiation potential = ? Reduction potential
E
cell
= R.P of cathode ? R.P of anode
E
cell
= R.P. of cathode + O.P of anode
E
cell
is always a +ve quantity & Anode will be electrode of low R.P
Eº
Cell
= SRP of cathode ? SRP of anode.
? Greater the SRP value greater will be oxidising power.
GIBBS FREE ENERGY CHANGE :
?G = ? nFE
cell
?Gº = ? nFEº
cell
NERNST EQUATION : (Effect of concentration and temp on emf of cell)
?G = ?Gº + RT ?nQ (where Q is raection quotient)
?Gº = ? RT ?n K
eq
E
cell
= Eº
cell
?
nF
RT
?n Q
E
cell
= Eº
cell
? Q log
nF
RT 303 . 2
E
cell
= Eº
cell
?
n
0591 . 0
log Q [At 298 K]
At chemical equilibrium
?G = 0 ; E
cell
= 0.
? log K
eq
=
0591 . 0
E n
o
cell
.
Eº
cell
=
n
0591 . 0
log K
eq
For an electrode M(s)/M
n+
.
nF
RT 303 . 2
º E E
M / M M / M
n n ? ? ? ? log
] M [
1
n?
.
CONCENTRATION CELL :
A cell in which both the electrods are made up of same material.
For all concentration cell Eº
cell
= 0.
(a) Electrolyte Concentration Cell :
eg. Zn(s) / Zn
2+
(c
1
) || Zn
2+
(c
2
) / Zn(s)
E =
2
0591 . 0
log
1
2
C
C
(b) Electrode Concentration Cell :
eg. Pt, H
2
(P
1
atm) / H
+
(1M) / H
2
(P
2
atm) / Pt
E =
2
0591 . 0
log ?
?
?
?
?
?
?
?
2
1
P
P
DIFFERENT TYPES OF ELECTRODES :
1. Metal-Metal ion Electrode M(s)/M
n+
. M
n+
+ ne
?
?? ? M(s)
E = Eº +
n
0591 . 0
log[M
n+
]
2. Gas-ion Electrode Pt /H
2
(Patm) /H
+
(XM)
as a reduction electrode
H
+
(aq) + e
?
?? ?
2
1
H
2
(Patm)
E = Eº ? 0.0591 log
] H [
P 2
1
H
2
?
3. Oxidation-reduction Electrode Pt / Fe
2+
, Fe
3+
as a reduction electrode Fe
3+
+ e
?
?? ? Fe
2+
E = Eº ? 0.0591 log
] Fe [
] Fe [
3
2
?
?
4. Metal-Metal insoluble salt Electrode eg. Ag/AgCl, Cl
?
as a reduction electrode AgCl(s) + e
?
?? ? Ag(s) + Cl
?
Ag / AgCl / Cl
E ?
=
Ag / AgCl
0
/ Cl
E ?
? 0.0591 log [Cl
?
].
ELECTROLYSIS :
(a) K
+
, Ca
+2
, Na
+
, Mg
+2
, Al
+3
, Zn
+2
, Fe
+2
, H
+
, Cu
+2
, Ag
+
, Au
+3
.
Increasing order of deposition.
(b) Similarly the anion which is strogner reducing agent(low value of SRP)
is liberated first at the anode.
diposition of order g sin Increa
, Br , Cl , OH , NO , SO
? ? ? ?
3
? 2
4
? ? ? ? ? ? ? ? ? ? ? ?
?
I
FARADAY?S LAW OF ELECTROLYSIS :
First Law :
w = zq w = Z it Z = Electrochemical equivalent of substance
Second Law :
W ? E
E
W
= constant
..........
E
W
E
W
2
2
1
1
? ?
96500
factor efficiency current t i
E
W ? ?
?
.
Current efficiency =
100
produced deposited/ mass l Theoritica
produced deposited/ mass actual
?
CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu & Fe AT CATHODE
Cu / Cu
2 º E ?
2
0591 . 0
? log
? 2
Cu
1
=
Fe / Fe
2 º E ? ?
2
0591 . 0
log
? 2
Fe
1
Condition for the simultaneous deposition of Cu & Fe on cathode.
CONDUCTANCE :
? Conductance =
ce tan sis Re
1
? Specific conductance or conductivity :
(Reciprocal of specific resistance) K =
?
1
K = specific conductance
? Equivalent conductance :
Normality
1000 K
E
?
? ?
unit : -ohm
?1
cm
2
eq
?1
? Molar conductance :
Molarity
1000 K
m
?
? ?
unit : -ohm
?1
cm
2
mole
?1
specific conductance = conductance ×
a
?
KOHLRAUSCH?S LAW :
Variation of ?
eq
/ ?
M
of a solution with concentration :
(i) Strong electrolyte
?
M
c
=
?
?
M
? b
c
(ii) Weak electrolytes : ?
?
= n
+
?
?
??
+ n
?
??
?
?
where ? is the molar conductivity
n
+
= No of cations obtained after dissociation per formula unit
n
?
= No of anions obtained after dissociation per formula unit
APPLICATION OF KOHLRAUSCH LAW :
1. Calculation of ?
0
M
of weak electrolytes :
?
0
M
(CH3COOHl)
= ?
0
M(CH3COONa)
+ ?
0
M(HCl)
? ?
0
M(NaCl)
2. To calculate degree of diossociation of a week electrolyte
? =
0
m
c
m
?
?
; K
eq
=
) 1 (
c
2
? ?
?
3. Solubility (S) of sparingly soluble salt & their K
sp
?
M
c
= ?
M
?
= ? ×
ility lub so
1000
K
sp
= S
2
.
Transport Number :
t
c
= ?
?
?
?
?
?
? ? ?
?
a c
c
, t
a
= ?
?
?
?
?
?
? ? ?
?
c a
a
.
Where t
c
= Transport Number of cation & t
a
= Transport Number of
anion
Read More