Atomic structure refers to the structure of an atom comprising a nucleus (centre) in which the protons (positively charged) and neutrons (neutral) are present. The negatively charged particles called electrons revolve around the centre of the nucleus.
The history of atomic structure and quantum mechanics dates back to the times of Democritus, the man who first proposed that matter is composed of atoms. The study about the structure of an atom gives a great insight into the entire class of chemical reactions, bonds and their physical properties. The first scientific theory of atomic structure was proposed by John Dalton in the 1800s.
The advances in atomic structure and quantum mechanics have led to the discovery of other fundamental particles. The discovery of subatomic particles has been the base for many other discoveries and inventions.
The atomic structure of an element refers to the constitution of its nucleus and the arrangement of the electrons around it. Primarily, the atomic structure of matter is made up of protons, electrons and neutrons.
The protons and neutrons make up the nucleus of the atom, which is surrounded by the electrons belonging to the atom. The atomic number of an element describes the total number of protons in its nucleus.
Neutral atoms have equal numbers of protons and electrons. However, atoms may gain or lose electrons in order to increase their stability and the resulting charged entity is called an ion.
Atoms of different elements have different atomic structures because they contain different numbers of protons and electrons. This is the reason for the unique characteristics of different elements.
In the 18th and 19th centuries, many scientists attempted to explain the structure of the atom with the help of atomic models. Each of these models had their own merits and demerits and were pivotal to the development of the modern atomic model. The most notable contributions to the field were by the scientists John Dalton, J.J. Thomson, Ernest Rutherford and Niels Bohr. Their ideas on the structure of the atom are discussed in this subsection.
The English chemist John Dalton suggested that all matter is made up of atoms, which were indivisible and indestructible. He also stated that all the atoms of an element were exactly the same, but the atoms of different elements differ in size and mass.
Chemical reactions, according to Dalton’s atomic theory, involve a rearrangement of atoms to form products. According to the postulates proposed by Dalton, the atomic structure comprised atoms, the smallest particle responsible for the chemical reactions to occur.
The following are the postulates of his theory:
Dalton’s atomic theory successfully explained the Laws of chemical reactions, namely, the Law of conservation of mass, Law of constant properties, Law of multiple proportions and Law of reciprocal proportions.
The discovery of particles inside atoms led to a better understanding of chemical species, these particles inside the atoms are called subatomic particles. The discovery of various subatomic particles is as follows:
The English chemist Sir Joseph John Thomson put forth his model describing the atomic structure in the early 1900s. He was later awarded the Nobel prize for the discovery of “electrons”. His work is based on an experiment called cathode ray experiment. The construction of working of the experiment is as follows:
It has a tube made of glass which has two openings, one for the vacuum pump and the other for the inlet through which a gas is pumped in.
The role of the vacuum pump is to maintain “partial vacuum” inside the glass chamber. A high voltage power supply is connected using electrodes i.e. cathode and Anode is fitted inside the glass tube.
From this ratio, the charge of the electron was found by Mullikin through oil drop experiment. [Charge of e– = 1.6 × 10-16 C and Mass of e– = 9.1093 × 10-31 kg].
Rutherford, a student of J. J. Thomson modified the atomic structure with the discovery of another subatomic particle called “Nucleus”. His atomic model is based on the Alpha ray scattering experiment.
➤ Construction
➤ Observations
➤ Conclusions
Based on the above observations and conclusions, Rutherford proposed his own atomic structure which is as follows.
➤ Protons
➤ Neutrons
➤ Electrons
Nucleons are the components of the nucleus of an atom. A nucleon can either be a proton or a neutron. Each element has a unique number of protons in it, which is described by its unique atomic number. However, several atomic structures of an element can exist, which differ in the total number of nucleons.
These variants of elements having a different nucleon number (also known as the mass number) are called isotopes of the element. Therefore, the isotopes of an element have the same number of protons but differ in the number of neutrons.
The atomic structure of an isotope is described with the help of the chemical symbol of the element, the atomic number of the element, and the mass number of the isotope. For example, there exist three known naturally occurring isotopes of hydrogen, namely, protium, deuterium, and tritium. The atomic structures of these hydrogen isotopes are illustrated below.
The isotopes of an element vary in stability. The half-lives of isotopes also differ. However, they generally have similar chemical behavior owing to the fact that they hold the same electronic structures.
The structure of atom of an element can be simply represented via the total number of protons, electrons, and neutrons present in it. The atomic structures of a few elements are illustrated below.
The most abundant isotope of hydrogen on the planet Earth is protium. The atomic number and the mass number of this isotope are 1 and 1, respectively.
Structure of Hydrogen atom: This implies that it contains one proton, one electron, and no neutrons ( total number of neutrons = mass number – atomic number)
Carbon has two stable isotopes – 12C and 13C. Of these isotopes, 12C has an abundance of 98.9%. It contains 6 protons, 6 electrons, and 6 neutrons.
Structure of Carbon atom: The electrons are distributed into two shells and the outermost shell (valence shell) has four electrons. The tetravalency of carbon enables it to form a variety of chemical bonds with various elements.
There exist three stable isotopes of oxygen – 18O, 17O, and 16O. However, oxygen-16 is the most abundant isotope.
Structure of Oxygen atom: Since the atomic number of this isotope is 8 and the mass number is 16, it consists of 8 protons and 8 neutrons. 6 out of the 8 electrons in an oxygen atom lie in the valence shell.
Neils Bohr put forth his model of the atom in the year 1915. This is the most widely used atomic model to describe the atomic structure of an element which is based on Planck’s theory of quantization.
➤ Postulates
Heisenberg’s uncertainty principle: Heisenberg stated that no two conjugate physical quantities can be measured simultaneously with 100% accuracy. These will always be some error or uncertainty in the measurement.
Drawback: Position and momentum are two such conjugate quantities which were measured accurately by Bohr (theoretically).
Stark effect: Phenomenon of deflection of electrons in the presence of an electric field.
Zeeman effect: Phenomenon of deflection of electrons in the presence of a magnetic field.
The electrons which were treated to be particles, the evidence of photoelectric effect shows they also have wave nature. This was proved by Thomas young with the help of his double slit experiment.
De-Broglie concluded that since nature is symmetrical, so should be light or any other matter wave.
➤ Quantum Numbers
The electrons have to be filled in the s, p, d, f in accordance with the following rule.
1. Aufbau’s principle: The filling of electrons should take place in accordance with the ascending order of energy of orbitals:
2. Pauli’s exclusion principle: No two electrons can have all the four quantum numbers to be the same or, if two electrons have to placed in an energy state they should be placed with opposite spies.
3. Hund’s rule of maximum multiplicity: In case of filling degenerate (same energy) orbitals, all the degenerate orbitals have to be singly filled first and then only pairing has to happen.
What are subatomic particles?
Subatomic particles are the particles that constitute an atom. Generally, this term refers to protons, electrons, and neutrons.
How do the atomic structures of isotopes vary?
They vary in terms of the total number of neutrons present in the nucleus of the atom, which is described by their nucleon numbers.
What are the shortcomings of Bohr’s atomic model?
According to this atomic model, the structure of atom offers poor spectral predictions for larger atoms. It also failed to explain the Zeeman effect. It could only successfully explain the hydrogen spectrum.
How can the total number of neutrons in the nucleus of a given isotope be determined?
The mass number of an isotope is given by the sum of the total number of protons and neutrons in it. The atomic number describes the total number of protons in the nucleus. Therefore, the number of neutrons can be determined by subtracting the atomic number from the mass number.
![]() |
Use Code STAYHOME200 and get INR 200 additional OFF
|
Use Coupon Code |
209 videos|480 docs|369 tests
|