Q.1. If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = then |z1 + z2+ z3| is
Ans. 1
Put then
Now,
or
or, | z1 + z2 + z3 |= 1
Q.2. f |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is equal to
Ans. 2
|9z1z2 + 4z1z3 + z2z3| = 12
⇒
⇒
⇒
⇒
Q.3. If z1 , z2 are complex numbers such that and then =
Ans. 5
Similarly,
Q.4. If |z1| = 2, |z2| = 3, |z3| = 4 and | 2z1 + 3z2 + 4z3 |= 4 , then absolute value of 8z2z3 + 27z3z1+ 64z1z2 equals
Ans. 96
=
=
= (24) (4) = 96
Q.5. If a, b, c are three distinct positive real numbers then the number of real roots of ax2 + 2b|x| - c = 0 is
Ans. 2
∴
a, b, c are positive. So,
∴ x has two real values.
Q.6. The sum of all positive integral values of 'a ', a ∈ [1, 500] for which the equation [ x ]3 + x - a = 0 has solution is ([.] denote G.I.F)
Ans. 812
a is integer then x must be integer, i.e., [x] = x
a = x3 + x
= 812
Q.7. If p, q ∈ {1, 2, 3, 4}, the number of equations of the form px2 + qx + 1 = 0 having real roots is
Ans. 7
for the real roots D ≥ 0 ⇒ q2 - 4p ≥ 0 ⇒ q2 ≥ 4p
If p = 1 then q2 ≥ 4p ⇒ q2 ≥ 4 ⇒ q = 2, 3, 4
If p = 2 then q2 ≥ 4p ⇒ q2 ≥ 8 ⇒ q = 3, 4
If p = 3 then q2 ≥ 4p ⇒ q2 ≥ 12 ⇒ q = 4
If p = 4 then q2 ≥ 4p ⇒ q2 ≥ 16 ⇒ q = 4.
∴ there are 7 real roots.
Q.8. The least integral value of ‘a’ such that (a - 3)x2 + 12x + a + 6 > 0∀ x ∈ R is
Ans. 7
⇒
Least integral value of a = 7
Q.9. If α satisfies and simultaneously, then the real part of α is _____
Ans. 6
Given that
Take a = x+ iy
∴
and
∴ x = 6, y = 8,17
∴ Re (α )= 6
Q.10. If ω is fifth root of unity, then log2| 1 + ω + ω2 + ω3 - ω-1| is equal to
Ans. 1
Since ω = (1)1/ 5 ∴ ω5 =1
and 1 + ω + ω2 + ω3 + ω4 = 0, |ω| = 1
⇒
447 docs|930 tests
|
|
Explore Courses for JEE exam
|