JEE Exam  >  JEE Notes  >  DPP: Daily Practice Problems for JEE Main & Advanced  >  DPP for JEE: Daily Practice Problem- Inverse Trigonometric Functions (Solutions)

Inverse Trigonometric Functions Practice Questions - DPP for JEE

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 2


 if 
Also, 
 
Hence, 
,
= 
[Since, ]
3. (b) We have, 
? 
? 
? 
? 
4. (d) We have
Page 3


 if 
Also, 
 
Hence, 
,
= 
[Since, ]
3. (b) We have, 
? 
? 
? 
? 
4. (d) We have
Put x = tan ? and y = tan f, we get
? cos
–1
 (cos 2?) + cos
–1
 (cos 2f) = 
? 
So, tan
–1
 x + tan
–1
 y = 
? x + y = 1 – xy ? x + y + xy = 1
5. (c) sin
–1
 (log[x]) is defined if  and 
   [x] = 1, 2  
Again, is defined if
 and 
 Domain of 
For  [x] = 1
  
 Range of 
6. (b) We have, 
Page 4


 if 
Also, 
 
Hence, 
,
= 
[Since, ]
3. (b) We have, 
? 
? 
? 
? 
4. (d) We have
Put x = tan ? and y = tan f, we get
? cos
–1
 (cos 2?) + cos
–1
 (cos 2f) = 
? 
So, tan
–1
 x + tan
–1
 y = 
? x + y = 1 – xy ? x + y + xy = 1
5. (c) sin
–1
 (log[x]) is defined if  and 
   [x] = 1, 2  
Again, is defined if
 and 
 Domain of 
For  [x] = 1
  
 Range of 
6. (b) We have, 
7. (c) Let S
8
 = cot
–1
2 + cot
–1
 8 + cot
–1
 18 + cot
–1
 32 + ....
? T
n
 = cot
–1
 2n
2
= tan
–1
 (2n + 1) – tan
–1
 (2n – 1)
? = tan
–1
 8 – tan
–1
 1
8. (d) Let cos
–1
 x + cos
–1
 y = 
Page 5


 if 
Also, 
 
Hence, 
,
= 
[Since, ]
3. (b) We have, 
? 
? 
? 
? 
4. (d) We have
Put x = tan ? and y = tan f, we get
? cos
–1
 (cos 2?) + cos
–1
 (cos 2f) = 
? 
So, tan
–1
 x + tan
–1
 y = 
? x + y = 1 – xy ? x + y + xy = 1
5. (c) sin
–1
 (log[x]) is defined if  and 
   [x] = 1, 2  
Again, is defined if
 and 
 Domain of 
For  [x] = 1
  
 Range of 
6. (b) We have, 
7. (c) Let S
8
 = cot
–1
2 + cot
–1
 8 + cot
–1
 18 + cot
–1
 32 + ....
? T
n
 = cot
–1
 2n
2
= tan
–1
 (2n + 1) – tan
–1
 (2n – 1)
? = tan
–1
 8 – tan
–1
 1
8. (d) Let cos
–1
 x + cos
–1
 y = 
?  = 
? sin
–1
 x + sin
–1
 y = .
9. (a) Since, 
10. (d) Let sin
–1
 a = x ? a = sin x
sin
–1 
b = y ? b = sin y
sin
–1 
c = z ? c = sin z
?
= sin x cos x + sin y cosy + sinz cosz
= (1/2) (sin2x + sin2y + sin 2z) =(1/2) (4sin x sin y sin z)
= 2 sinx siny sinz = = 2abc
11. (a) We have
Since  for all x
Read More
174 docs

Top Courses for JEE

174 docs
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Inverse Trigonometric Functions Practice Questions - DPP for JEE

,

Important questions

,

Exam

,

practice quizzes

,

Inverse Trigonometric Functions Practice Questions - DPP for JEE

,

ppt

,

Summary

,

Viva Questions

,

mock tests for examination

,

pdf

,

video lectures

,

Sample Paper

,

Inverse Trigonometric Functions Practice Questions - DPP for JEE

,

study material

,

past year papers

,

Free

,

Extra Questions

,

MCQs

,

Objective type Questions

,

Semester Notes

;