Page 1
PART : CHEMISTRY
SECTION – 1 : (Maximum Marks : 80)
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Determine wavelength of electron in 4
th
Bohr's orbit ?
4
th
cksgj d{kk esa bysDVªkWu dh rjax)Sè;Z dk fuèkkZj.k dhft, ?
(1) 4 ?a0 (2) 2 ?a0 (3) 8 ?a0 (4) 6 ?a0
Ans. (3)
Sol. 2 ?r = n ?
2 ? ×
2
n
Z
a0 = n ?
2 ? ×
2
4
1
a0 = n ?
? = 8 ?a0
2. Which of the following species have one unpaired electron each?
fuEu esa ls dkSulh Lih'kht ¼izR;sd esa½ ,d v;qfXer bysDVªkWu j[krh gSa\
(1) O2, O2
–
(2) O2, O2
+
(3) O2
+
, O2
–
(4) O2, O2
2 –
Ans. (3)
Sol. O2 = ?1s
2
?*1s
2
??2s
2
??*2s
2
??2pz
2
??2px
2
= ?2py
2
?*2px
1
= ?2py
1
3. For Br2( ?)
Enthalpy of atomisation = x kJ/mol
Bond dissociation enthalpy of bromine = y kJ/mole
then
(1) x > y (2) x < y (3) x = y (4) Relation does not exist
Br2( ?) ds fy,
ijek.kfodj.k dh ,sUFksYih = x kJ/mol
czksehu dh caèk fo;kstu ,sUFksYih = y kJ/mole
rc
(1) x > y (2) x < y (3) x = y (4) dksbZ lEcU„èk ugah gksrk gS
Ans. (1)
Sol.
Br2(
?
)
Br2(g)
?HVap.
?H atomisation = x kJ/mole
2Br(g)
Bond energy = y kJ/mole
Br2(
?
)
Br2(g)
?HVap.
?ijek.kfodj.k = x kJ/mole
2Br(g)
caèk ÅtkZ = y kJ/mole
?Hatomisation = ?Hvap + Bond energy
Hence x > y
?Hijek.kfodj.k = ?Hvap + caèk ÅtkZ
bl izdkj x > y
Page 2
PART : CHEMISTRY
SECTION – 1 : (Maximum Marks : 80)
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Determine wavelength of electron in 4
th
Bohr's orbit ?
4
th
cksgj d{kk esa bysDVªkWu dh rjax)Sè;Z dk fuèkkZj.k dhft, ?
(1) 4 ?a0 (2) 2 ?a0 (3) 8 ?a0 (4) 6 ?a0
Ans. (3)
Sol. 2 ?r = n ?
2 ? ×
2
n
Z
a0 = n ?
2 ? ×
2
4
1
a0 = n ?
? = 8 ?a0
2. Which of the following species have one unpaired electron each?
fuEu esa ls dkSulh Lih'kht ¼izR;sd esa½ ,d v;qfXer bysDVªkWu j[krh gSa\
(1) O2, O2
–
(2) O2, O2
+
(3) O2
+
, O2
–
(4) O2, O2
2 –
Ans. (3)
Sol. O2 = ?1s
2
?*1s
2
??2s
2
??*2s
2
??2pz
2
??2px
2
= ?2py
2
?*2px
1
= ?2py
1
3. For Br2( ?)
Enthalpy of atomisation = x kJ/mol
Bond dissociation enthalpy of bromine = y kJ/mole
then
(1) x > y (2) x < y (3) x = y (4) Relation does not exist
Br2( ?) ds fy,
ijek.kfodj.k dh ,sUFksYih = x kJ/mol
czksehu dh caèk fo;kstu ,sUFksYih = y kJ/mole
rc
(1) x > y (2) x < y (3) x = y (4) dksbZ lEcU„èk ugah gksrk gS
Ans. (1)
Sol.
Br2(
?
)
Br2(g)
?HVap.
?H atomisation = x kJ/mole
2Br(g)
Bond energy = y kJ/mole
Br2(
?
)
Br2(g)
?HVap.
?ijek.kfodj.k = x kJ/mole
2Br(g)
caèk ÅtkZ = y kJ/mole
?Hatomisation = ?Hvap + Bond energy
Hence x > y
?Hijek.kfodj.k = ?Hvap + caèk ÅtkZ
bl izdkj x > y
4. Which of the following oxides are acidic, Basic Amphoteric Respectively.
fuEu esa ls dkSuls vkWDlkbM Øe'k% vEyh;] {kkjh;] mHk;èkehZ gS&
(1) MgO, P4O10, Al2O3 (2) N2O3, Li2O, Al2O3 (3) SO3, Al2O3, Na2O (4) P4O10, Al2O3, MgO
Ans. (2)
Sol. Non-metal oxides are acidic in nature
alkali metal oxides are basic in nature
Al2O3 is amphoteric.
vèkkfRod vkWDlkbM vEyh; izd`fr ds gksrs gSA
{kkjh; èkkrq vkWDlkbM {kkjh; izd`fr ds gksrs gSA
Al2O3 mHk;èkehZ gSA
5. Complex Cr(H2O)6Cln shows geometrical isomerism and also reacts with AgNO3 solution.
Given : Spin only magnetic moment = 3.8 B.M.
What is the IUPAC name of the complex.
(1) Hexaaquachromium(III) chloride
(2) Tetraaquadichloridochromium(III) chloride dihydrate
(3) Hexaaquachromium(IV) chloride
(4) Tetraaquadichloridochromium(IV) chloride dihydrate
ladqy Cr(H2O)6Cln T;kferh; leko;ork n'kkZrk gS rFkk ;g AgNO3 foy;u ds lkFk Hkh vfHkd`r gksrk gSA
fn;k gS: izpØ.k dsoy pqEcdh; vk?kq.kZ = 3.8 B.M.
ladqy dk IUPAC uke D;k gS \
(1) gsDlk,DokØksfe;e (III) DyksjkbM
(2) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV
(3) gsDlk,DokØksfe;e (IV) DyksjkbM
(4) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (IV) DyksjkbM MkbZgkbMªsV
Ans. (2)
Sol. Cr(H2O)6Cln ( ?complex)spin = 3.8 B.M.
From data of magnetic moment oxidation number of Cr should be +3
Hence complex is Cr(H2O)6Cl3.
Complex shows geometrical isomerism therefore formula of complex is [Cr(H2O)4Cl2]Cl ?2H2O.
It's IUPAC Name: Tetraaquadichloridochromium(III) chloride dihydrate
Cr(H2O)6Cln ( ?ladqy)pØ.k = 3.8 B.M.
pqEcdh; vk?kq.kZ ds eku ls Cr dk vkWDlhdj.k vad +3 gksuk pkfg,A
bl izdkj ladqy Cr(H2O)6Cl3 gSA
ladqy T;kferh; leko;ork n'kkZrk gSA blfy, ladqy dk lw=k [Cr(H2O)4Cl2]Cl ?2H2O gSA
bldk IUPAC uke VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV gSA ?
6. The electronic configuration of bivalent Europium and trivalent cerium respectively is:
(Atomic Number : Xe = 54, Ce = 58, Eu = 63)
f}la;ksth ;wjksfi;e rFkk f=kla;ksth flfj;e ds bysDVªkWfud foU;kl Øe'k% gS%
(ijek.kq Øekd : Xe = 54, Ce = 58, Eu = 63)
(1) [Xe]4f
7
, [Xe]4f
1
(2) [Xe]4f
7
6s
2
, [Xe]4f
1
(3) [Xe]4f
7
6s
2
, [Xe]4f
1
5d
1
6s
2
(4) [Xe]4f
7
, [Xe]4f
1
5d
1
6s
2
Ans. (1)
Sol. Eu
2+
: [Xe]4f
7
Ce
3+
: [Xe]4f
1
Page 3
PART : CHEMISTRY
SECTION – 1 : (Maximum Marks : 80)
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Determine wavelength of electron in 4
th
Bohr's orbit ?
4
th
cksgj d{kk esa bysDVªkWu dh rjax)Sè;Z dk fuèkkZj.k dhft, ?
(1) 4 ?a0 (2) 2 ?a0 (3) 8 ?a0 (4) 6 ?a0
Ans. (3)
Sol. 2 ?r = n ?
2 ? ×
2
n
Z
a0 = n ?
2 ? ×
2
4
1
a0 = n ?
? = 8 ?a0
2. Which of the following species have one unpaired electron each?
fuEu esa ls dkSulh Lih'kht ¼izR;sd esa½ ,d v;qfXer bysDVªkWu j[krh gSa\
(1) O2, O2
–
(2) O2, O2
+
(3) O2
+
, O2
–
(4) O2, O2
2 –
Ans. (3)
Sol. O2 = ?1s
2
?*1s
2
??2s
2
??*2s
2
??2pz
2
??2px
2
= ?2py
2
?*2px
1
= ?2py
1
3. For Br2( ?)
Enthalpy of atomisation = x kJ/mol
Bond dissociation enthalpy of bromine = y kJ/mole
then
(1) x > y (2) x < y (3) x = y (4) Relation does not exist
Br2( ?) ds fy,
ijek.kfodj.k dh ,sUFksYih = x kJ/mol
czksehu dh caèk fo;kstu ,sUFksYih = y kJ/mole
rc
(1) x > y (2) x < y (3) x = y (4) dksbZ lEcU„èk ugah gksrk gS
Ans. (1)
Sol.
Br2(
?
)
Br2(g)
?HVap.
?H atomisation = x kJ/mole
2Br(g)
Bond energy = y kJ/mole
Br2(
?
)
Br2(g)
?HVap.
?ijek.kfodj.k = x kJ/mole
2Br(g)
caèk ÅtkZ = y kJ/mole
?Hatomisation = ?Hvap + Bond energy
Hence x > y
?Hijek.kfodj.k = ?Hvap + caèk ÅtkZ
bl izdkj x > y
4. Which of the following oxides are acidic, Basic Amphoteric Respectively.
fuEu esa ls dkSuls vkWDlkbM Øe'k% vEyh;] {kkjh;] mHk;èkehZ gS&
(1) MgO, P4O10, Al2O3 (2) N2O3, Li2O, Al2O3 (3) SO3, Al2O3, Na2O (4) P4O10, Al2O3, MgO
Ans. (2)
Sol. Non-metal oxides are acidic in nature
alkali metal oxides are basic in nature
Al2O3 is amphoteric.
vèkkfRod vkWDlkbM vEyh; izd`fr ds gksrs gSA
{kkjh; èkkrq vkWDlkbM {kkjh; izd`fr ds gksrs gSA
Al2O3 mHk;èkehZ gSA
5. Complex Cr(H2O)6Cln shows geometrical isomerism and also reacts with AgNO3 solution.
Given : Spin only magnetic moment = 3.8 B.M.
What is the IUPAC name of the complex.
(1) Hexaaquachromium(III) chloride
(2) Tetraaquadichloridochromium(III) chloride dihydrate
(3) Hexaaquachromium(IV) chloride
(4) Tetraaquadichloridochromium(IV) chloride dihydrate
ladqy Cr(H2O)6Cln T;kferh; leko;ork n'kkZrk gS rFkk ;g AgNO3 foy;u ds lkFk Hkh vfHkd`r gksrk gSA
fn;k gS: izpØ.k dsoy pqEcdh; vk?kq.kZ = 3.8 B.M.
ladqy dk IUPAC uke D;k gS \
(1) gsDlk,DokØksfe;e (III) DyksjkbM
(2) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV
(3) gsDlk,DokØksfe;e (IV) DyksjkbM
(4) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (IV) DyksjkbM MkbZgkbMªsV
Ans. (2)
Sol. Cr(H2O)6Cln ( ?complex)spin = 3.8 B.M.
From data of magnetic moment oxidation number of Cr should be +3
Hence complex is Cr(H2O)6Cl3.
Complex shows geometrical isomerism therefore formula of complex is [Cr(H2O)4Cl2]Cl ?2H2O.
It's IUPAC Name: Tetraaquadichloridochromium(III) chloride dihydrate
Cr(H2O)6Cln ( ?ladqy)pØ.k = 3.8 B.M.
pqEcdh; vk?kq.kZ ds eku ls Cr dk vkWDlhdj.k vad +3 gksuk pkfg,A
bl izdkj ladqy Cr(H2O)6Cl3 gSA
ladqy T;kferh; leko;ork n'kkZrk gSA blfy, ladqy dk lw=k [Cr(H2O)4Cl2]Cl ?2H2O gSA
bldk IUPAC uke VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV gSA ?
6. The electronic configuration of bivalent Europium and trivalent cerium respectively is:
(Atomic Number : Xe = 54, Ce = 58, Eu = 63)
f}la;ksth ;wjksfi;e rFkk f=kla;ksth flfj;e ds bysDVªkWfud foU;kl Øe'k% gS%
(ijek.kq Øekd : Xe = 54, Ce = 58, Eu = 63)
(1) [Xe]4f
7
, [Xe]4f
1
(2) [Xe]4f
7
6s
2
, [Xe]4f
1
(3) [Xe]4f
7
6s
2
, [Xe]4f
1
5d
1
6s
2
(4) [Xe]4f
7
, [Xe]4f
1
5d
1
6s
2
Ans. (1)
Sol. Eu
2+
: [Xe]4f
7
Ce
3+
: [Xe]4f
1
7. Ksp of PbCl
2
= 1.6 × 10
–5
On mixing
300 mL, 0.134M Pb(NO3)2(aq.) + 100 mL, 0.4 M NaCl(aq.)
(1) Q > Ksp (2) Q < Ksp (3) Q = Ksp (4) Relation does not exit
PbCl
2
dk Ksp = 1.6 × 10
–5
300 mL, 0.134M Pb(NO3)2(aq.) + 100 mL, 0.4 M NaCl(aq.) feykus ij&
(1) Q > Ksp (2) Q < Ksp
(3) Q = Ksp (4) fdlh izdkj ds lEcUèk dk vfLrRo ugha gSA
Ans. (1)
Sol. Q = [Pb
2+
][Cl
–
]
2
2
3 0 0 0 .1 3 4 1 0 0 0 .4
4 0 0 4 0 0
?? ??
??
??
??
? ?
2 3 0 .1 3 4
0 .1
4
?
??
= 0.105 × 10
–2
=1.005 ×10
–3
Q > K sp
8. Which of the following can not act as both oxidising and reducing agent ?
fuEu esa ls dkSu vkWDlhdkjd rFkk vipk;d nksuks ds leku O;ogkj ugha dj ldrk gS\
(1) H2SO3 (2) HNO2 (3) H3PO4 (4) H2O2
Ans. (3)
Sol. As in H3PO4 Phosphorous is present it's maximum oxidation number state hence it cannot act as
reducing agent.
pwafd H3PO4 esa QkWLQksjl bldh mPpre vkWDlhdj.k voLFkk esa mifLFkr gSA blfy, ;g vipk;d ds leku dk;Z
ugha dj ldrk gSA
9. First Ionisation energy of Be is higher than that of Boron.
Select the correct statements regarding this
(i) It is easier to extract electron from 2p orbital than 2s orbital
(ii) Penetration power of 2s orbital is greater than 2p orbital
(iii) Shielding of 2p electron by 2s electron
(iv) Radius of Boron atom is larger than that of Be
(1) (i), (ii), (iii), (iv) (2) (i), (iii), (iv) (3) (ii), (iii), (iv) (4) (i), (ii), (iii)
Be dh izFke vk;uu ÅtkZ cksjksu dh rqyuk esa vfèkd gksrh gSA
mDr dFku ds lanHkZ esa lgh dFku@dFkuksa dk p;u dhft,sA
(i) 2p d{kd ls bysDVªkWu dk i`Fkddj.k 2s d{kd dh rqyuk esa ljy gksrk gSA
(ii) 2s d{kd dh Hksnu {kerk 2p d{kd dh rqyuk esa vfèkd gksrh gSA
(iii) 2s bysDVªkWu }kjk 2p bysDVªkWu dk ifjj{k.k gksrk gSA
(iv) cksjksu ijek.kq dh f=kT;k Be dh rqyuk esa vfèkd gksrh gSA
(1) (i), (ii), (iii), (iv) (2) (i), (iii), (iv) (3) (ii), (iii), (iv) (4) (i), (ii), (iii)
Ans. (4)
Sol. Theory Based.
Page 4
PART : CHEMISTRY
SECTION – 1 : (Maximum Marks : 80)
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Determine wavelength of electron in 4
th
Bohr's orbit ?
4
th
cksgj d{kk esa bysDVªkWu dh rjax)Sè;Z dk fuèkkZj.k dhft, ?
(1) 4 ?a0 (2) 2 ?a0 (3) 8 ?a0 (4) 6 ?a0
Ans. (3)
Sol. 2 ?r = n ?
2 ? ×
2
n
Z
a0 = n ?
2 ? ×
2
4
1
a0 = n ?
? = 8 ?a0
2. Which of the following species have one unpaired electron each?
fuEu esa ls dkSulh Lih'kht ¼izR;sd esa½ ,d v;qfXer bysDVªkWu j[krh gSa\
(1) O2, O2
–
(2) O2, O2
+
(3) O2
+
, O2
–
(4) O2, O2
2 –
Ans. (3)
Sol. O2 = ?1s
2
?*1s
2
??2s
2
??*2s
2
??2pz
2
??2px
2
= ?2py
2
?*2px
1
= ?2py
1
3. For Br2( ?)
Enthalpy of atomisation = x kJ/mol
Bond dissociation enthalpy of bromine = y kJ/mole
then
(1) x > y (2) x < y (3) x = y (4) Relation does not exist
Br2( ?) ds fy,
ijek.kfodj.k dh ,sUFksYih = x kJ/mol
czksehu dh caèk fo;kstu ,sUFksYih = y kJ/mole
rc
(1) x > y (2) x < y (3) x = y (4) dksbZ lEcU„èk ugah gksrk gS
Ans. (1)
Sol.
Br2(
?
)
Br2(g)
?HVap.
?H atomisation = x kJ/mole
2Br(g)
Bond energy = y kJ/mole
Br2(
?
)
Br2(g)
?HVap.
?ijek.kfodj.k = x kJ/mole
2Br(g)
caèk ÅtkZ = y kJ/mole
?Hatomisation = ?Hvap + Bond energy
Hence x > y
?Hijek.kfodj.k = ?Hvap + caèk ÅtkZ
bl izdkj x > y
4. Which of the following oxides are acidic, Basic Amphoteric Respectively.
fuEu esa ls dkSuls vkWDlkbM Øe'k% vEyh;] {kkjh;] mHk;èkehZ gS&
(1) MgO, P4O10, Al2O3 (2) N2O3, Li2O, Al2O3 (3) SO3, Al2O3, Na2O (4) P4O10, Al2O3, MgO
Ans. (2)
Sol. Non-metal oxides are acidic in nature
alkali metal oxides are basic in nature
Al2O3 is amphoteric.
vèkkfRod vkWDlkbM vEyh; izd`fr ds gksrs gSA
{kkjh; èkkrq vkWDlkbM {kkjh; izd`fr ds gksrs gSA
Al2O3 mHk;èkehZ gSA
5. Complex Cr(H2O)6Cln shows geometrical isomerism and also reacts with AgNO3 solution.
Given : Spin only magnetic moment = 3.8 B.M.
What is the IUPAC name of the complex.
(1) Hexaaquachromium(III) chloride
(2) Tetraaquadichloridochromium(III) chloride dihydrate
(3) Hexaaquachromium(IV) chloride
(4) Tetraaquadichloridochromium(IV) chloride dihydrate
ladqy Cr(H2O)6Cln T;kferh; leko;ork n'kkZrk gS rFkk ;g AgNO3 foy;u ds lkFk Hkh vfHkd`r gksrk gSA
fn;k gS: izpØ.k dsoy pqEcdh; vk?kq.kZ = 3.8 B.M.
ladqy dk IUPAC uke D;k gS \
(1) gsDlk,DokØksfe;e (III) DyksjkbM
(2) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV
(3) gsDlk,DokØksfe;e (IV) DyksjkbM
(4) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (IV) DyksjkbM MkbZgkbMªsV
Ans. (2)
Sol. Cr(H2O)6Cln ( ?complex)spin = 3.8 B.M.
From data of magnetic moment oxidation number of Cr should be +3
Hence complex is Cr(H2O)6Cl3.
Complex shows geometrical isomerism therefore formula of complex is [Cr(H2O)4Cl2]Cl ?2H2O.
It's IUPAC Name: Tetraaquadichloridochromium(III) chloride dihydrate
Cr(H2O)6Cln ( ?ladqy)pØ.k = 3.8 B.M.
pqEcdh; vk?kq.kZ ds eku ls Cr dk vkWDlhdj.k vad +3 gksuk pkfg,A
bl izdkj ladqy Cr(H2O)6Cl3 gSA
ladqy T;kferh; leko;ork n'kkZrk gSA blfy, ladqy dk lw=k [Cr(H2O)4Cl2]Cl ?2H2O gSA
bldk IUPAC uke VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV gSA ?
6. The electronic configuration of bivalent Europium and trivalent cerium respectively is:
(Atomic Number : Xe = 54, Ce = 58, Eu = 63)
f}la;ksth ;wjksfi;e rFkk f=kla;ksth flfj;e ds bysDVªkWfud foU;kl Øe'k% gS%
(ijek.kq Øekd : Xe = 54, Ce = 58, Eu = 63)
(1) [Xe]4f
7
, [Xe]4f
1
(2) [Xe]4f
7
6s
2
, [Xe]4f
1
(3) [Xe]4f
7
6s
2
, [Xe]4f
1
5d
1
6s
2
(4) [Xe]4f
7
, [Xe]4f
1
5d
1
6s
2
Ans. (1)
Sol. Eu
2+
: [Xe]4f
7
Ce
3+
: [Xe]4f
1
7. Ksp of PbCl
2
= 1.6 × 10
–5
On mixing
300 mL, 0.134M Pb(NO3)2(aq.) + 100 mL, 0.4 M NaCl(aq.)
(1) Q > Ksp (2) Q < Ksp (3) Q = Ksp (4) Relation does not exit
PbCl
2
dk Ksp = 1.6 × 10
–5
300 mL, 0.134M Pb(NO3)2(aq.) + 100 mL, 0.4 M NaCl(aq.) feykus ij&
(1) Q > Ksp (2) Q < Ksp
(3) Q = Ksp (4) fdlh izdkj ds lEcUèk dk vfLrRo ugha gSA
Ans. (1)
Sol. Q = [Pb
2+
][Cl
–
]
2
2
3 0 0 0 .1 3 4 1 0 0 0 .4
4 0 0 4 0 0
?? ??
??
??
??
? ?
2 3 0 .1 3 4
0 .1
4
?
??
= 0.105 × 10
–2
=1.005 ×10
–3
Q > K sp
8. Which of the following can not act as both oxidising and reducing agent ?
fuEu esa ls dkSu vkWDlhdkjd rFkk vipk;d nksuks ds leku O;ogkj ugha dj ldrk gS\
(1) H2SO3 (2) HNO2 (3) H3PO4 (4) H2O2
Ans. (3)
Sol. As in H3PO4 Phosphorous is present it's maximum oxidation number state hence it cannot act as
reducing agent.
pwafd H3PO4 esa QkWLQksjl bldh mPpre vkWDlhdj.k voLFkk esa mifLFkr gSA blfy, ;g vipk;d ds leku dk;Z
ugha dj ldrk gSA
9. First Ionisation energy of Be is higher than that of Boron.
Select the correct statements regarding this
(i) It is easier to extract electron from 2p orbital than 2s orbital
(ii) Penetration power of 2s orbital is greater than 2p orbital
(iii) Shielding of 2p electron by 2s electron
(iv) Radius of Boron atom is larger than that of Be
(1) (i), (ii), (iii), (iv) (2) (i), (iii), (iv) (3) (ii), (iii), (iv) (4) (i), (ii), (iii)
Be dh izFke vk;uu ÅtkZ cksjksu dh rqyuk esa vfèkd gksrh gSA
mDr dFku ds lanHkZ esa lgh dFku@dFkuksa dk p;u dhft,sA
(i) 2p d{kd ls bysDVªkWu dk i`Fkddj.k 2s d{kd dh rqyuk esa ljy gksrk gSA
(ii) 2s d{kd dh Hksnu {kerk 2p d{kd dh rqyuk esa vfèkd gksrh gSA
(iii) 2s bysDVªkWu }kjk 2p bysDVªkWu dk ifjj{k.k gksrk gSA
(iv) cksjksu ijek.kq dh f=kT;k Be dh rqyuk esa vfèkd gksrh gSA
(1) (i), (ii), (iii), (iv) (2) (i), (iii), (iv) (3) (ii), (iii), (iv) (4) (i), (ii), (iii)
Ans. (4)
Sol. Theory Based.
10. [PdFClBrI]
2 –
Number of Geometrical Isomers = n. For [Fe(CN)6]
n –6
, Determine the spin only magnetic
moment and CFSE (Ignore the pairing energy)
(1) 1.73 B.M., –2 ?0 (2) 2.84 B.M., –1.6 ?0 (3) 0, –1.6 ?0 (4) 5.92 B.M., –2.4 ?0
[PdFClBrI]
2 –
T;kfefr; leko;oh;ksa dh la[;k = n. [Fe(CN)6]
n –6
ds fy;s, izpØ.k dsoy pqEcdh; vk?kw.kZ rFkk
CFSE dk eku fu/kkZfjr dhft;s (;qXeu ÅtkZ dks ux.; ekurs gq;s)
Ans. (1)
Sol. Number of Geometrical Isomers in square planar [PdFClBrI]
2 –
are = 3
Hence, n = 3
[Fe(CN)6]
3 –
Fe
3+
= 3d
5
, According to CFT configuration is
2 2 1 0 0
2gg
te
? ? 2 nn ??? = 1.73 B.M.
0 2 0
– 0 . 4 0 . 6
g eg
CFSE nt n ? ? ? ? ? ?
= –0.4 ?0 × 5 = –2.0 ? 0
Sol. oxZ leryh; [PdFClBrI]
2 –
esa T;kfefr; leko;oh;ksa dh la[;k = 3 gSA
blfy;s, n = 3
[Fe(CN)6]
3 –
Fe
3+
= 3d
5
, CFT ds vuqlkj foU;kl
2 2 1 0 0
2gg
te
? ? 2 nn ??? = 1.73 B.M.
0 2 0
– 0 . 4 0 . 6
g eg
CFSE nt n ? ? ? ? ? ?
= –0.4 ?0 × 5 = –2.0 ? 0
11. A can reduce BO2 under which conditions.
fdl ifjfLFkfr esa A, BO2 dks vipf;r dj ldrk gS
1400°C
?Gf
A + O2 ? AO2
B + O2 ??BO2
T(0°C)
(1) > 1400°C (2) < 1400°C
(3) > 1200°C and (rFkk) < 1400°C (4) < 1200°C
Ans. (1)
Sol. A + BO2 ? ? ? B + AO2
?G = –ve
Only above 1400°C
dsoy 1400°C ds Åij
Page 5
PART : CHEMISTRY
SECTION – 1 : (Maximum Marks : 80)
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 20 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. Determine wavelength of electron in 4
th
Bohr's orbit ?
4
th
cksgj d{kk esa bysDVªkWu dh rjax)Sè;Z dk fuèkkZj.k dhft, ?
(1) 4 ?a0 (2) 2 ?a0 (3) 8 ?a0 (4) 6 ?a0
Ans. (3)
Sol. 2 ?r = n ?
2 ? ×
2
n
Z
a0 = n ?
2 ? ×
2
4
1
a0 = n ?
? = 8 ?a0
2. Which of the following species have one unpaired electron each?
fuEu esa ls dkSulh Lih'kht ¼izR;sd esa½ ,d v;qfXer bysDVªkWu j[krh gSa\
(1) O2, O2
–
(2) O2, O2
+
(3) O2
+
, O2
–
(4) O2, O2
2 –
Ans. (3)
Sol. O2 = ?1s
2
?*1s
2
??2s
2
??*2s
2
??2pz
2
??2px
2
= ?2py
2
?*2px
1
= ?2py
1
3. For Br2( ?)
Enthalpy of atomisation = x kJ/mol
Bond dissociation enthalpy of bromine = y kJ/mole
then
(1) x > y (2) x < y (3) x = y (4) Relation does not exist
Br2( ?) ds fy,
ijek.kfodj.k dh ,sUFksYih = x kJ/mol
czksehu dh caèk fo;kstu ,sUFksYih = y kJ/mole
rc
(1) x > y (2) x < y (3) x = y (4) dksbZ lEcU„èk ugah gksrk gS
Ans. (1)
Sol.
Br2(
?
)
Br2(g)
?HVap.
?H atomisation = x kJ/mole
2Br(g)
Bond energy = y kJ/mole
Br2(
?
)
Br2(g)
?HVap.
?ijek.kfodj.k = x kJ/mole
2Br(g)
caèk ÅtkZ = y kJ/mole
?Hatomisation = ?Hvap + Bond energy
Hence x > y
?Hijek.kfodj.k = ?Hvap + caèk ÅtkZ
bl izdkj x > y
4. Which of the following oxides are acidic, Basic Amphoteric Respectively.
fuEu esa ls dkSuls vkWDlkbM Øe'k% vEyh;] {kkjh;] mHk;èkehZ gS&
(1) MgO, P4O10, Al2O3 (2) N2O3, Li2O, Al2O3 (3) SO3, Al2O3, Na2O (4) P4O10, Al2O3, MgO
Ans. (2)
Sol. Non-metal oxides are acidic in nature
alkali metal oxides are basic in nature
Al2O3 is amphoteric.
vèkkfRod vkWDlkbM vEyh; izd`fr ds gksrs gSA
{kkjh; èkkrq vkWDlkbM {kkjh; izd`fr ds gksrs gSA
Al2O3 mHk;èkehZ gSA
5. Complex Cr(H2O)6Cln shows geometrical isomerism and also reacts with AgNO3 solution.
Given : Spin only magnetic moment = 3.8 B.M.
What is the IUPAC name of the complex.
(1) Hexaaquachromium(III) chloride
(2) Tetraaquadichloridochromium(III) chloride dihydrate
(3) Hexaaquachromium(IV) chloride
(4) Tetraaquadichloridochromium(IV) chloride dihydrate
ladqy Cr(H2O)6Cln T;kferh; leko;ork n'kkZrk gS rFkk ;g AgNO3 foy;u ds lkFk Hkh vfHkd`r gksrk gSA
fn;k gS: izpØ.k dsoy pqEcdh; vk?kq.kZ = 3.8 B.M.
ladqy dk IUPAC uke D;k gS \
(1) gsDlk,DokØksfe;e (III) DyksjkbM
(2) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV
(3) gsDlk,DokØksfe;e (IV) DyksjkbM
(4) VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (IV) DyksjkbM MkbZgkbMªsV
Ans. (2)
Sol. Cr(H2O)6Cln ( ?complex)spin = 3.8 B.M.
From data of magnetic moment oxidation number of Cr should be +3
Hence complex is Cr(H2O)6Cl3.
Complex shows geometrical isomerism therefore formula of complex is [Cr(H2O)4Cl2]Cl ?2H2O.
It's IUPAC Name: Tetraaquadichloridochromium(III) chloride dihydrate
Cr(H2O)6Cln ( ?ladqy)pØ.k = 3.8 B.M.
pqEcdh; vk?kq.kZ ds eku ls Cr dk vkWDlhdj.k vad +3 gksuk pkfg,A
bl izdkj ladqy Cr(H2O)6Cl3 gSA
ladqy T;kferh; leko;ork n'kkZrk gSA blfy, ladqy dk lw=k [Cr(H2O)4Cl2]Cl ?2H2O gSA
bldk IUPAC uke VsVªk,DOkkMkbZDyksjkbMksaØksfe;e (III) DyksjkbM MkbZgkbMªsV gSA ?
6. The electronic configuration of bivalent Europium and trivalent cerium respectively is:
(Atomic Number : Xe = 54, Ce = 58, Eu = 63)
f}la;ksth ;wjksfi;e rFkk f=kla;ksth flfj;e ds bysDVªkWfud foU;kl Øe'k% gS%
(ijek.kq Øekd : Xe = 54, Ce = 58, Eu = 63)
(1) [Xe]4f
7
, [Xe]4f
1
(2) [Xe]4f
7
6s
2
, [Xe]4f
1
(3) [Xe]4f
7
6s
2
, [Xe]4f
1
5d
1
6s
2
(4) [Xe]4f
7
, [Xe]4f
1
5d
1
6s
2
Ans. (1)
Sol. Eu
2+
: [Xe]4f
7
Ce
3+
: [Xe]4f
1
7. Ksp of PbCl
2
= 1.6 × 10
–5
On mixing
300 mL, 0.134M Pb(NO3)2(aq.) + 100 mL, 0.4 M NaCl(aq.)
(1) Q > Ksp (2) Q < Ksp (3) Q = Ksp (4) Relation does not exit
PbCl
2
dk Ksp = 1.6 × 10
–5
300 mL, 0.134M Pb(NO3)2(aq.) + 100 mL, 0.4 M NaCl(aq.) feykus ij&
(1) Q > Ksp (2) Q < Ksp
(3) Q = Ksp (4) fdlh izdkj ds lEcUèk dk vfLrRo ugha gSA
Ans. (1)
Sol. Q = [Pb
2+
][Cl
–
]
2
2
3 0 0 0 .1 3 4 1 0 0 0 .4
4 0 0 4 0 0
?? ??
??
??
??
? ?
2 3 0 .1 3 4
0 .1
4
?
??
= 0.105 × 10
–2
=1.005 ×10
–3
Q > K sp
8. Which of the following can not act as both oxidising and reducing agent ?
fuEu esa ls dkSu vkWDlhdkjd rFkk vipk;d nksuks ds leku O;ogkj ugha dj ldrk gS\
(1) H2SO3 (2) HNO2 (3) H3PO4 (4) H2O2
Ans. (3)
Sol. As in H3PO4 Phosphorous is present it's maximum oxidation number state hence it cannot act as
reducing agent.
pwafd H3PO4 esa QkWLQksjl bldh mPpre vkWDlhdj.k voLFkk esa mifLFkr gSA blfy, ;g vipk;d ds leku dk;Z
ugha dj ldrk gSA
9. First Ionisation energy of Be is higher than that of Boron.
Select the correct statements regarding this
(i) It is easier to extract electron from 2p orbital than 2s orbital
(ii) Penetration power of 2s orbital is greater than 2p orbital
(iii) Shielding of 2p electron by 2s electron
(iv) Radius of Boron atom is larger than that of Be
(1) (i), (ii), (iii), (iv) (2) (i), (iii), (iv) (3) (ii), (iii), (iv) (4) (i), (ii), (iii)
Be dh izFke vk;uu ÅtkZ cksjksu dh rqyuk esa vfèkd gksrh gSA
mDr dFku ds lanHkZ esa lgh dFku@dFkuksa dk p;u dhft,sA
(i) 2p d{kd ls bysDVªkWu dk i`Fkddj.k 2s d{kd dh rqyuk esa ljy gksrk gSA
(ii) 2s d{kd dh Hksnu {kerk 2p d{kd dh rqyuk esa vfèkd gksrh gSA
(iii) 2s bysDVªkWu }kjk 2p bysDVªkWu dk ifjj{k.k gksrk gSA
(iv) cksjksu ijek.kq dh f=kT;k Be dh rqyuk esa vfèkd gksrh gSA
(1) (i), (ii), (iii), (iv) (2) (i), (iii), (iv) (3) (ii), (iii), (iv) (4) (i), (ii), (iii)
Ans. (4)
Sol. Theory Based.
10. [PdFClBrI]
2 –
Number of Geometrical Isomers = n. For [Fe(CN)6]
n –6
, Determine the spin only magnetic
moment and CFSE (Ignore the pairing energy)
(1) 1.73 B.M., –2 ?0 (2) 2.84 B.M., –1.6 ?0 (3) 0, –1.6 ?0 (4) 5.92 B.M., –2.4 ?0
[PdFClBrI]
2 –
T;kfefr; leko;oh;ksa dh la[;k = n. [Fe(CN)6]
n –6
ds fy;s, izpØ.k dsoy pqEcdh; vk?kw.kZ rFkk
CFSE dk eku fu/kkZfjr dhft;s (;qXeu ÅtkZ dks ux.; ekurs gq;s)
Ans. (1)
Sol. Number of Geometrical Isomers in square planar [PdFClBrI]
2 –
are = 3
Hence, n = 3
[Fe(CN)6]
3 –
Fe
3+
= 3d
5
, According to CFT configuration is
2 2 1 0 0
2gg
te
? ? 2 nn ??? = 1.73 B.M.
0 2 0
– 0 . 4 0 . 6
g eg
CFSE nt n ? ? ? ? ? ?
= –0.4 ?0 × 5 = –2.0 ? 0
Sol. oxZ leryh; [PdFClBrI]
2 –
esa T;kfefr; leko;oh;ksa dh la[;k = 3 gSA
blfy;s, n = 3
[Fe(CN)6]
3 –
Fe
3+
= 3d
5
, CFT ds vuqlkj foU;kl
2 2 1 0 0
2gg
te
? ? 2 nn ??? = 1.73 B.M.
0 2 0
– 0 . 4 0 . 6
g eg
CFSE nt n ? ? ? ? ? ?
= –0.4 ?0 × 5 = –2.0 ? 0
11. A can reduce BO2 under which conditions.
fdl ifjfLFkfr esa A, BO2 dks vipf;r dj ldrk gS
1400°C
?Gf
A + O2 ? AO2
B + O2 ??BO2
T(0°C)
(1) > 1400°C (2) < 1400°C
(3) > 1200°C and (rFkk) < 1400°C (4) < 1200°C
Ans. (1)
Sol. A + BO2 ? ? ? B + AO2
?G = –ve
Only above 1400°C
dsoy 1400°C ds Åij
12. A ? ? ? B 700 K
A
C
? ? ? B 500 K
Rate of reaction in absence of catalyst at 700 K is same as in presence of catalyst at 500 K. If catalyst
decreases activation energy barrier by 30 kJ/mole, determine activation energy in presence of catalyst.
(Assume 'A' factor to be same in both cases)
700 K ij mRizsjd dh vuqifLFkfr esa vfHkfØ;k dk osx 500 K ij mRizsjd dh mifLFkfr esa vfHkfØ;k ds osx ds leku
gS ;fn mRizssjd lfØ;.k ÅtkZ vojksèk esa 30 kJ/mole ls deh djrk gSA rc mRizsjd dh mifLFkfr esa lfØ;.k ÅtkZ
dk fuèkkZj.k dhft,sA (ekuk fd 'A' dkjd nksuks ifjfLFkfr;ksa esa leku gSA)
(1) 75 kJ (2) 135 kJ (3) 105 kJ (4) 125 kJ
Ans. (1)
Sol. Kcat = K
1
1
Ea
RT
Ae
?
=
2
2
Ea
RT
Ae
?
12
12
Ea Ea
TT
? Ea1 = Ea2 – 30
2
Ea 30
500
?
=
2
Ea
700
5Ea2 = 7Ea2 – 210
Ea2 =
210
2
= 105 kJ/mole
Activation energy of the catalysed reaction = 105 – 30 = 75 kJ/mole
13. A substance 'X' having low melting point, does not conduct electricity in both solid and liquid state. 'X'
can be :
,d inkFkZ 'X' de xyukad j[krk gS] Bksl rFkk æo izkoLFkk nksuks esa fo|qr dk dqpkyd gSA 'X' gks ldrk gSA
(1) Hg (2) ZnS (3) SiC (4) CCl4
Ans. (4)
Sol. CCl4 ? Non-conductor in solid and liquid phase.
CCl4 ? Bksl rFkk æo izkoLFkk esa dqpkyd gSA
14.
NH2
Br
(1) NaNO2 + HCl
(2) Cu2Br2
(3) HNO3, Conc. H2SO4
The major product for above sequence of reaction is :
mijksDr vfHkfØ;k Øe es fy;s izeq[k mRikn gS&
(1)
Br
Br
O2N
(2)
Br
Br
NO2
(3)
Br
Br
O2N
NO2
(4)
Br
Br
NO2
Ans. (2)
Sol.
NH2
Br
(1) NaNO2 + HCl
(2) Cu2Br2
N2
+
Cl
–
Br
Br
Br
(3)HNO3
Conc. H2SO4
Br
Br
NO2
Read More