Page 1
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 19 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 19 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. If f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
then find the area bounded by f(x) and g(x) from x =
2
1
to x =
2
3
.
;fn f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
rc f(x) rFkk g(x) ds }kjk x =
2
1
ls x =
2
3
rd ifjc} {ks=kQy Kkr dhft;sA .
(1)
3
1
–
4
3
(2)
3
1
4
3
? (3) 2 3 (4) 3 3
Ans. (1)
Sol.
C( 2 / 3 ,1– 2 / 3 )
?
?
?
?
?
?
2
1
,
2
1
D
B
?
?
?
?
?
?
0 ,
2
1
A
x =
2
3
( 2 / 3 ,0)
Required area = Area of trapezium ABCD –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
vHkh"V {ks=kQy = leyEc prqHkZt ABCD dk {ks=kQy –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
Page 2
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 19 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 19 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. If f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
then find the area bounded by f(x) and g(x) from x =
2
1
to x =
2
3
.
;fn f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
rc f(x) rFkk g(x) ds }kjk x =
2
1
ls x =
2
3
rd ifjc} {ks=kQy Kkr dhft;sA .
(1)
3
1
–
4
3
(2)
3
1
4
3
? (3) 2 3 (4) 3 3
Ans. (1)
Sol.
C( 2 / 3 ,1– 2 / 3 )
?
?
?
?
?
?
2
1
,
2
1
D
B
?
?
?
?
?
?
0 ,
2
1
A
x =
2
3
( 2 / 3 ,0)
Required area = Area of trapezium ABCD –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
vHkh"V {ks=kQy = leyEc prqHkZt ABCD dk {ks=kQy –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
=
2
1
?
?
?
?
?
?
?
?
2
1 – 3
?
?
?
?
?
?
?
?
?
2
3
– 1
2
1
–
2
3
2
1
3
2
1
– x
3
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
4
3
–
3
1
2. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't be
z ,d lfeJ la[;k bl izdkj gS fd |Re(z)| + |Im (z)| = 4 rc |z| ugh gks ldrk
(1) 7 (2) 10 (3)
2
17
(4) 8
Ans. (1)
Sol. z = x + iy
|x| + |y| = 4
Minimum value of |z| = 2 2
Maximum value of |z| = 4
|z| ? ? ? 16 , 8
So |z| can't be 7
(0, 4)
(0, –4)
(4, 0) (–4, 0)
Sol. z = x + iy
|x| + |y| = 4
|z| dk U;wure eku = 2 2
|z| dk vf/kdre eku = 4
|z| ? ? ? 16 , 8
vr% |z|= 7 ugh gks ldrk
(0, 4)
(0, –4)
(4, 0) (–4, 0)
Page 3
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 19 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 19 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. If f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
then find the area bounded by f(x) and g(x) from x =
2
1
to x =
2
3
.
;fn f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
rc f(x) rFkk g(x) ds }kjk x =
2
1
ls x =
2
3
rd ifjc} {ks=kQy Kkr dhft;sA .
(1)
3
1
–
4
3
(2)
3
1
4
3
? (3) 2 3 (4) 3 3
Ans. (1)
Sol.
C( 2 / 3 ,1– 2 / 3 )
?
?
?
?
?
?
2
1
,
2
1
D
B
?
?
?
?
?
?
0 ,
2
1
A
x =
2
3
( 2 / 3 ,0)
Required area = Area of trapezium ABCD –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
vHkh"V {ks=kQy = leyEc prqHkZt ABCD dk {ks=kQy –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
=
2
1
?
?
?
?
?
?
?
?
2
1 – 3
?
?
?
?
?
?
?
?
?
2
3
– 1
2
1
–
2
3
2
1
3
2
1
– x
3
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
4
3
–
3
1
2. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't be
z ,d lfeJ la[;k bl izdkj gS fd |Re(z)| + |Im (z)| = 4 rc |z| ugh gks ldrk
(1) 7 (2) 10 (3)
2
17
(4) 8
Ans. (1)
Sol. z = x + iy
|x| + |y| = 4
Minimum value of |z| = 2 2
Maximum value of |z| = 4
|z| ? ? ? 16 , 8
So |z| can't be 7
(0, 4)
(0, –4)
(4, 0) (–4, 0)
Sol. z = x + iy
|x| + |y| = 4
|z| dk U;wure eku = 2 2
|z| dk vf/kdre eku = 4
|z| ? ? ? 16 , 8
vr% |z|= 7 ugh gks ldrk
(0, 4)
(0, –4)
(4, 0) (–4, 0)
3. If ;fn f(x) =
3 x 4 x c x
2 x 3 x b x
1 x 2 x a x
? ? ?
? ? ?
? ? ?
and rFkk a – 2b + c = 1 then rc
(1) f(50) = 1 (2) f(–50) = – 1
(3) f(50) = 501 (4) f(50) = – 501
Ans. (1)
Sol. Apply R1 = R1 + R3 – 2R2 iz;ksx djus ij
? f(x) =
3 x 4 x c x
2 x 3 x b x
0 0 1
? ? ?
? ? ? ? f(x) = 1 ? f(50) = 1
4. Let an is a positive term of a GP and
?
?
?
?
100
1 n
1 n 2
200 a ,
?
?
?
100
1 n
n 2
100 a find
?
?
200
1 n
n
a
ekuk an xq.kksÙkj Js<+h dk /kukRed in gS rFkk
?
?
?
?
100
1 n
1 n 2
200 a ,
?
?
?
100
1 n
n 2
100 a ,
?
?
200
1 n
n
a dk eku gS&
(1) 300 (2) 150 (3) 175 (4) 225
Ans. (2)
Sol. Let GP is a, ar, ar
2
……..
?
?
?
100
1 n
1 n 2
a = a3 + a5 + ….. a201 = 200 ?
1 – r
) 1 – r ( ar
2
200 2
= 200 ….(1)
?
?
100
1 n
n 2
a = a2 + a4 + ……. a200 = 100 =
1 – r
) 1 – r ( ar
2
200
= 100 ….(2)
Form (1) and (2) r = 2
add both ?
? a2 + a3 + ……….. a200 + a201 = 300 ? ? ? r(a1 + ………… a200) = 300
?
?
200
1 n
n
a =
r
300
= 150
Sol. ekuk a, ar, ar
2
…….. xq.kksÙkj Js<+h esa gS
?
?
?
100
1 n
1 n 2
a = a3 + a5 + ….. a201 = 200 ?
1 – r
) 1 – r ( ar
2
200 2
= 200 ….(1)
?
?
100
1 n
n 2
a = a2 + a4 + ……. a200 = 100 =
1 – r
) 1 – r ( ar
2
200
= 100 ….(2)
lehdj.k (1) rFkk (2) ls r = 2
nksuksa dk ;ksx djus ij ?
? a2 + a3 + ……….. a200 + a201 = 300 ? ? ? r(a1 + ………… a200) = 300
?
?
200
1 n
n
a =
r
300
= 150
Page 4
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 19 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 19 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. If f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
then find the area bounded by f(x) and g(x) from x =
2
1
to x =
2
3
.
;fn f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
rc f(x) rFkk g(x) ds }kjk x =
2
1
ls x =
2
3
rd ifjc} {ks=kQy Kkr dhft;sA .
(1)
3
1
–
4
3
(2)
3
1
4
3
? (3) 2 3 (4) 3 3
Ans. (1)
Sol.
C( 2 / 3 ,1– 2 / 3 )
?
?
?
?
?
?
2
1
,
2
1
D
B
?
?
?
?
?
?
0 ,
2
1
A
x =
2
3
( 2 / 3 ,0)
Required area = Area of trapezium ABCD –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
vHkh"V {ks=kQy = leyEc prqHkZt ABCD dk {ks=kQy –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
=
2
1
?
?
?
?
?
?
?
?
2
1 – 3
?
?
?
?
?
?
?
?
?
2
3
– 1
2
1
–
2
3
2
1
3
2
1
– x
3
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
4
3
–
3
1
2. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't be
z ,d lfeJ la[;k bl izdkj gS fd |Re(z)| + |Im (z)| = 4 rc |z| ugh gks ldrk
(1) 7 (2) 10 (3)
2
17
(4) 8
Ans. (1)
Sol. z = x + iy
|x| + |y| = 4
Minimum value of |z| = 2 2
Maximum value of |z| = 4
|z| ? ? ? 16 , 8
So |z| can't be 7
(0, 4)
(0, –4)
(4, 0) (–4, 0)
Sol. z = x + iy
|x| + |y| = 4
|z| dk U;wure eku = 2 2
|z| dk vf/kdre eku = 4
|z| ? ? ? 16 , 8
vr% |z|= 7 ugh gks ldrk
(0, 4)
(0, –4)
(4, 0) (–4, 0)
3. If ;fn f(x) =
3 x 4 x c x
2 x 3 x b x
1 x 2 x a x
? ? ?
? ? ?
? ? ?
and rFkk a – 2b + c = 1 then rc
(1) f(50) = 1 (2) f(–50) = – 1
(3) f(50) = 501 (4) f(50) = – 501
Ans. (1)
Sol. Apply R1 = R1 + R3 – 2R2 iz;ksx djus ij
? f(x) =
3 x 4 x c x
2 x 3 x b x
0 0 1
? ? ?
? ? ? ? f(x) = 1 ? f(50) = 1
4. Let an is a positive term of a GP and
?
?
?
?
100
1 n
1 n 2
200 a ,
?
?
?
100
1 n
n 2
100 a find
?
?
200
1 n
n
a
ekuk an xq.kksÙkj Js<+h dk /kukRed in gS rFkk
?
?
?
?
100
1 n
1 n 2
200 a ,
?
?
?
100
1 n
n 2
100 a ,
?
?
200
1 n
n
a dk eku gS&
(1) 300 (2) 150 (3) 175 (4) 225
Ans. (2)
Sol. Let GP is a, ar, ar
2
……..
?
?
?
100
1 n
1 n 2
a = a3 + a5 + ….. a201 = 200 ?
1 – r
) 1 – r ( ar
2
200 2
= 200 ….(1)
?
?
100
1 n
n 2
a = a2 + a4 + ……. a200 = 100 =
1 – r
) 1 – r ( ar
2
200
= 100 ….(2)
Form (1) and (2) r = 2
add both ?
? a2 + a3 + ……….. a200 + a201 = 300 ? ? ? r(a1 + ………… a200) = 300
?
?
200
1 n
n
a =
r
300
= 150
Sol. ekuk a, ar, ar
2
…….. xq.kksÙkj Js<+h esa gS
?
?
?
100
1 n
1 n 2
a = a3 + a5 + ….. a201 = 200 ?
1 – r
) 1 – r ( ar
2
200 2
= 200 ….(1)
?
?
100
1 n
n 2
a = a2 + a4 + ……. a200 = 100 =
1 – r
) 1 – r ( ar
2
200
= 100 ….(2)
lehdj.k (1) rFkk (2) ls r = 2
nksuksa dk ;ksx djus ij ?
? a2 + a3 + ……….. a200 + a201 = 300 ? ? ? r(a1 + ………… a200) = 300
?
?
200
1 n
n
a =
r
300
= 150
5. If ;fn
dx
dy
=
2 2
y x
xy
?
, y(1) = 1 and rFkk y(x) = e then rc x = ?
(1)
2
3
e (2) 3 e (3) 2 e (4)
2
e
Ans. (2)
Sol. Put y = vx j[kus ij
dx
dy
= v + x
dx
dv
v + x
dx
dv
=
2 2 2
2
x v x
vx
?
?
3
2
v
v 1 ?
dv = –
x
1
dx
? ?
?
?
?
?
?
?
?
?
v
1
v
1
3
dv =
?
dx
x
1 –
?
2
1 –
2
v
1
+ ?nv = – ?nx + c
? –
2
2
y 2
x
= – ?ny + c
When tc x = 1, y = 1 then rc
–
2
1
= c
? x
2
= y
2
(1 + 2 ?ny)
? x
2
= e
2
(3)
? x = ± 3 e
So blfy;s x = e 3
6. Let probability distribution is
ekuk izkf;drk forj.k bl izdkj gS
xi : 1 2 3 4 5
Pi : k
2
2k k 2k 5k
2
then value of p(x > 2) is
rc p(x > 2) dk eku gS
(1)
12
7
(2)
36
1
(3)
6
1
(4)
36
23
Ans. (4)
Sol.
?
? 1 p
i
? 6k
2
+ 5k = 1
6k
2
+ 5k – 1 = 0
6k
2
+ 6k – k – 1 = 0
Page 5
PART : MATHEMATICS
SECTION – 1
Straight Objective Type (lh/ks oLrqfu"B izdkj)
This section contains 19 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its
answer, out of which Only One is correct.
bl [k.M esa 19 cgq&fodYih iz'u gSaA izR;sd iz'u ds 4 fodYi (1), (2), (3) rFkk (4) gSa] ftuesa ls flQZ ,d lgh gSA
1. If f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
then find the area bounded by f(x) and g(x) from x =
2
1
to x =
2
3
.
;fn f(x) =
?
?
?
?
?
?
?
?
?
? ?
?
? ?
1 x
2
1
x – 1
2
1
x
2
1
2
1
x 0 x
g(x) =
2
2
1
– x ?
?
?
?
?
?
rc f(x) rFkk g(x) ds }kjk x =
2
1
ls x =
2
3
rd ifjc} {ks=kQy Kkr dhft;sA .
(1)
3
1
–
4
3
(2)
3
1
4
3
? (3) 2 3 (4) 3 3
Ans. (1)
Sol.
C( 2 / 3 ,1– 2 / 3 )
?
?
?
?
?
?
2
1
,
2
1
D
B
?
?
?
?
?
?
0 ,
2
1
A
x =
2
3
( 2 / 3 ,0)
Required area = Area of trapezium ABCD –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
vHkh"V {ks=kQy = leyEc prqHkZt ABCD dk {ks=kQy –
?
?
?
?
?
?
?
2 / 3
2 / 1
2
2
1
– x dx
=
2
1
?
?
?
?
?
?
?
?
2
1 – 3
?
?
?
?
?
?
?
?
?
2
3
– 1
2
1
–
2
3
2
1
3
2
1
– x
3
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
4
3
–
3
1
2. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't be
z ,d lfeJ la[;k bl izdkj gS fd |Re(z)| + |Im (z)| = 4 rc |z| ugh gks ldrk
(1) 7 (2) 10 (3)
2
17
(4) 8
Ans. (1)
Sol. z = x + iy
|x| + |y| = 4
Minimum value of |z| = 2 2
Maximum value of |z| = 4
|z| ? ? ? 16 , 8
So |z| can't be 7
(0, 4)
(0, –4)
(4, 0) (–4, 0)
Sol. z = x + iy
|x| + |y| = 4
|z| dk U;wure eku = 2 2
|z| dk vf/kdre eku = 4
|z| ? ? ? 16 , 8
vr% |z|= 7 ugh gks ldrk
(0, 4)
(0, –4)
(4, 0) (–4, 0)
3. If ;fn f(x) =
3 x 4 x c x
2 x 3 x b x
1 x 2 x a x
? ? ?
? ? ?
? ? ?
and rFkk a – 2b + c = 1 then rc
(1) f(50) = 1 (2) f(–50) = – 1
(3) f(50) = 501 (4) f(50) = – 501
Ans. (1)
Sol. Apply R1 = R1 + R3 – 2R2 iz;ksx djus ij
? f(x) =
3 x 4 x c x
2 x 3 x b x
0 0 1
? ? ?
? ? ? ? f(x) = 1 ? f(50) = 1
4. Let an is a positive term of a GP and
?
?
?
?
100
1 n
1 n 2
200 a ,
?
?
?
100
1 n
n 2
100 a find
?
?
200
1 n
n
a
ekuk an xq.kksÙkj Js<+h dk /kukRed in gS rFkk
?
?
?
?
100
1 n
1 n 2
200 a ,
?
?
?
100
1 n
n 2
100 a ,
?
?
200
1 n
n
a dk eku gS&
(1) 300 (2) 150 (3) 175 (4) 225
Ans. (2)
Sol. Let GP is a, ar, ar
2
……..
?
?
?
100
1 n
1 n 2
a = a3 + a5 + ….. a201 = 200 ?
1 – r
) 1 – r ( ar
2
200 2
= 200 ….(1)
?
?
100
1 n
n 2
a = a2 + a4 + ……. a200 = 100 =
1 – r
) 1 – r ( ar
2
200
= 100 ….(2)
Form (1) and (2) r = 2
add both ?
? a2 + a3 + ……….. a200 + a201 = 300 ? ? ? r(a1 + ………… a200) = 300
?
?
200
1 n
n
a =
r
300
= 150
Sol. ekuk a, ar, ar
2
…….. xq.kksÙkj Js<+h esa gS
?
?
?
100
1 n
1 n 2
a = a3 + a5 + ….. a201 = 200 ?
1 – r
) 1 – r ( ar
2
200 2
= 200 ….(1)
?
?
100
1 n
n 2
a = a2 + a4 + ……. a200 = 100 =
1 – r
) 1 – r ( ar
2
200
= 100 ….(2)
lehdj.k (1) rFkk (2) ls r = 2
nksuksa dk ;ksx djus ij ?
? a2 + a3 + ……….. a200 + a201 = 300 ? ? ? r(a1 + ………… a200) = 300
?
?
200
1 n
n
a =
r
300
= 150
5. If ;fn
dx
dy
=
2 2
y x
xy
?
, y(1) = 1 and rFkk y(x) = e then rc x = ?
(1)
2
3
e (2) 3 e (3) 2 e (4)
2
e
Ans. (2)
Sol. Put y = vx j[kus ij
dx
dy
= v + x
dx
dv
v + x
dx
dv
=
2 2 2
2
x v x
vx
?
?
3
2
v
v 1 ?
dv = –
x
1
dx
? ?
?
?
?
?
?
?
?
?
v
1
v
1
3
dv =
?
dx
x
1 –
?
2
1 –
2
v
1
+ ?nv = – ?nx + c
? –
2
2
y 2
x
= – ?ny + c
When tc x = 1, y = 1 then rc
–
2
1
= c
? x
2
= y
2
(1 + 2 ?ny)
? x
2
= e
2
(3)
? x = ± 3 e
So blfy;s x = e 3
6. Let probability distribution is
ekuk izkf;drk forj.k bl izdkj gS
xi : 1 2 3 4 5
Pi : k
2
2k k 2k 5k
2
then value of p(x > 2) is
rc p(x > 2) dk eku gS
(1)
12
7
(2)
36
1
(3)
6
1
(4)
36
23
Ans. (4)
Sol.
?
? 1 p
i
? 6k
2
+ 5k = 1
6k
2
+ 5k – 1 = 0
6k
2
+ 6k – k – 1 = 0
(6k – 1) (k + 1) = 0 ? k = – 1 (rejected vekU; ) ; k =
6
1
P(x > 2) = k + 2k + 5k
2
=
36
5
6
2
6
1
? ? =
36
5 12 6 ? ?
=
36
23
7.
? ?
?
? ? ? ?
?
2 tan 2 sec cos
d
2
= ?tan ? + 2log f(x) + c then ordered pair ( ?,f(x)) is
? ?
?
? ? ? ?
?
2 tan 2 sec cos
d
2
= ?tan ? + 2log f(x) + c rc Øfer ;qXe ( ?,f(x)) gS&
(1) (1, 1 + tan ?) (2) (1, 1 – tan ?) (3) (–1, 1 + tan ?) (4) (–1, 1 – tan ?)
Ans. (3)
Sol.
?
?
?
?
?
? ?
?
2 2
2
2
tan – 1
tan 2
tan – 1
tan 1
sec
d ?
=
? ?
? ?
?
? ?
? ?
2
2 2
tan 1
tan – 1 sec
d ? ?
=
? ?
?
? ?
? ?
tan 1
tan – 1 sec
2
d ? ?
tan ? ?= t ? sec
2
? d ? = dt
=
?
?
?
?
?
?
?
? t 1
t – 1
dt =
?
?
?
?
?
?
?
?
? dt
t 1
2
1 –
= – t + 2 log (1+t) + C
= –tan ? + 2 log (1 + tan ?) + C
? ? = –1 and f(x) = 1 + tan ?
8. If p ? ? (p ? ? q) is false. Truth value of p & q will be
;fn p ? ? (p ? ? q) vlR; gS] rc p & q dk lR;rrk eku gksxk
(1) TT (2) TF (3) F T (4) F F
Ans. (1)
Sol.
p q ?q p ? ?q p ?(p ? ?q)
T T F F F
T F T T T
F T F F T
F F T F T
Read More