JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2021 Mathematics March 18 Shift 1 Paper & Solutions

JEE Main 2021 Mathematics March 18 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


 
 
18
th
 March. 2021 | Shift 1
 
SECTION – A 
 
1. If the functions are defined as f(x) = x and g(x) = ? 1 x, then what is the common domain of the following 
functions : f + g, f – g, f/g, g/f, g – f where (f ± g) (x) = f(x) ± g(x), (f/g) (x) = 
f(x)
g(x)
 
 (1) 0 < x ? 1 
 
(2) 0 ? x ? 1 
 (3) 0 ? x ? 1 
 
(4) 0 < x < 1 
Ans. (4)  
Sol. f + g   = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f – g    = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f/g = 
?
x
1 x
 
  ? ? ? ? ? ? x 0 & 1 x 0 x [0,1) 
 g/f =
? 1 x
x
 
  ? ? ? ? ? ? 1 x 0 & x 0 x (0,1] 
 g – f = ? ? 1 x x 
  ? ? ? ? ? ? 1 x 0 & x 0 x [0,1] 
  ? ? x (0,1) 
 
2. Let ?, ?, ? be the roots of the equations, x
3
 + ax
2
 + bx + c = 0, (a, b, c ? R and a, b  and a, b ? 0). If the system 
of the equations (in u, v, w) given by ?u + ?v + ?w = 0; ?u + ?v + ?w = 0; ?u + ?v + ?w = 0 has non-trivial 
solutions, then the value of 
2
a
b
 is  
 (1) 5 
 
(2) 1 
 (3) 0  
 
(4) 3 
Ans. (4)  
Page 2


 
 
18
th
 March. 2021 | Shift 1
 
SECTION – A 
 
1. If the functions are defined as f(x) = x and g(x) = ? 1 x, then what is the common domain of the following 
functions : f + g, f – g, f/g, g/f, g – f where (f ± g) (x) = f(x) ± g(x), (f/g) (x) = 
f(x)
g(x)
 
 (1) 0 < x ? 1 
 
(2) 0 ? x ? 1 
 (3) 0 ? x ? 1 
 
(4) 0 < x < 1 
Ans. (4)  
Sol. f + g   = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f – g    = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f/g = 
?
x
1 x
 
  ? ? ? ? ? ? x 0 & 1 x 0 x [0,1) 
 g/f =
? 1 x
x
 
  ? ? ? ? ? ? 1 x 0 & x 0 x (0,1] 
 g – f = ? ? 1 x x 
  ? ? ? ? ? ? 1 x 0 & x 0 x [0,1] 
  ? ? x (0,1) 
 
2. Let ?, ?, ? be the roots of the equations, x
3
 + ax
2
 + bx + c = 0, (a, b, c ? R and a, b  and a, b ? 0). If the system 
of the equations (in u, v, w) given by ?u + ?v + ?w = 0; ?u + ?v + ?w = 0; ?u + ?v + ?w = 0 has non-trivial 
solutions, then the value of 
2
a
b
 is  
 (1) 5 
 
(2) 1 
 (3) 0  
 
(4) 3 
Ans. (4)  
 
 
Sol. x
3
 + ax
2
 + bx + c = 0 
   
 
 For non-trivial solutions, 
 
? ? ?
? ? ? ?
? ? ?
0 
 ?
3
 + ?
3
 + ?
3
 – 3 ? ? ? = 0  
 ? ? ? ? ? ?
? ?
? ? ? ? ? ? ? ? ? ? ? ? ?? ?
? ?
? ?
2
3 0 
 (–a) [a
2
 – 3b] = 0 
 a
2
 = 3b  ? ? ? a 0 ? 
 ? ?
2
a
3
b
 
 
3. If the equation ? ? ? ? ? ?
2
a| z| z z d 0 represents a circle where a, d are real constants, then which of the 
following condition is correct? 
 (1) ? ? ?
2
| | ad 0 
 
(2) ? ? ? ? ?
2
| | ad 0anda R {0} 
 (3) 
?
? ? ? 0,a,d R 
 
(4) ? ? ? ?
2
| | ad 0and a R 
Ans. (2)  
Sol. ? ? ? ? ? ?
2
a| z| z z d 0
 
 
? ?
? ?
? ? ? ?
? ? ?
? ? ? ? ? ?
? ?
? ?
? ? ?
? ? ? ?
? ?
d
zz z z 0
a a a
 
 Centre = –
?
a
 
 r = 
?
?
2
d
a a
 
    
?
? ?
2
d
a a
 
   ? ? ?
2
ad 
 
?
? ?
?
Page 3


 
 
18
th
 March. 2021 | Shift 1
 
SECTION – A 
 
1. If the functions are defined as f(x) = x and g(x) = ? 1 x, then what is the common domain of the following 
functions : f + g, f – g, f/g, g/f, g – f where (f ± g) (x) = f(x) ± g(x), (f/g) (x) = 
f(x)
g(x)
 
 (1) 0 < x ? 1 
 
(2) 0 ? x ? 1 
 (3) 0 ? x ? 1 
 
(4) 0 < x < 1 
Ans. (4)  
Sol. f + g   = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f – g    = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f/g = 
?
x
1 x
 
  ? ? ? ? ? ? x 0 & 1 x 0 x [0,1) 
 g/f =
? 1 x
x
 
  ? ? ? ? ? ? 1 x 0 & x 0 x (0,1] 
 g – f = ? ? 1 x x 
  ? ? ? ? ? ? 1 x 0 & x 0 x [0,1] 
  ? ? x (0,1) 
 
2. Let ?, ?, ? be the roots of the equations, x
3
 + ax
2
 + bx + c = 0, (a, b, c ? R and a, b  and a, b ? 0). If the system 
of the equations (in u, v, w) given by ?u + ?v + ?w = 0; ?u + ?v + ?w = 0; ?u + ?v + ?w = 0 has non-trivial 
solutions, then the value of 
2
a
b
 is  
 (1) 5 
 
(2) 1 
 (3) 0  
 
(4) 3 
Ans. (4)  
 
 
Sol. x
3
 + ax
2
 + bx + c = 0 
   
 
 For non-trivial solutions, 
 
? ? ?
? ? ? ?
? ? ?
0 
 ?
3
 + ?
3
 + ?
3
 – 3 ? ? ? = 0  
 ? ? ? ? ? ?
? ?
? ? ? ? ? ? ? ? ? ? ? ? ?? ?
? ?
? ?
2
3 0 
 (–a) [a
2
 – 3b] = 0 
 a
2
 = 3b  ? ? ? a 0 ? 
 ? ?
2
a
3
b
 
 
3. If the equation ? ? ? ? ? ?
2
a| z| z z d 0 represents a circle where a, d are real constants, then which of the 
following condition is correct? 
 (1) ? ? ?
2
| | ad 0 
 
(2) ? ? ? ? ?
2
| | ad 0anda R {0} 
 (3) 
?
? ? ? 0,a,d R 
 
(4) ? ? ? ?
2
| | ad 0and a R 
Ans. (2)  
Sol. ? ? ? ? ? ?
2
a| z| z z d 0
 
 
? ?
? ?
? ? ? ?
? ? ?
? ? ? ? ? ?
? ?
? ?
? ? ?
? ? ? ?
? ?
d
zz z z 0
a a a
 
 Centre = –
?
a
 
 r = 
?
?
2
d
a a
 
    
?
? ?
2
d
a a
 
   ? ? ?
2
ad 
 
?
? ?
?
 
 
18
th
 March. 2021 | Shift 1
4. ? ? ? ?
? ? ? ?
2 2 2 2
1 1 1 1
.....
3 1 5 1 7 1 (201) 1
 is equal to: 
 (1) 
101
404
 
 
(2) 
101
408
 
 (3) 
99
400
 
 
(4) 
25
101
  
Ans. (4)  
Sol. 
? ?
? ?
? ? ? ?
? ?
100 100
2
r 1 r 1
1 1
S
(2r 2) 2(r) (2r 1) 1
 
 
?
? ?
? ? ? ? ?
? ?
?
? ?
?
100
r 1
1 1 1
S
4 r r 1
 
 
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
1 1 1 1 1 1 1 1
S 1 ....
4 2 2 3 3 4 100 101
 
 
? ?
? ? ? ? ?
? ?
? ?
1 100 25
S
4 101 101
 
 
5. The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9 and y = mx 
+ 1 is also an integer, is: 
 (1) 3 
 
(2) 2 
 (3) 1 
 
(4) 0 
Ans. (2)  
Sol. 3x + 4(mx + 1) = 9 
x(3 + 4m) = 5 
?
?
5
x
(3 4m)
 
(3 + 4m) = ±1, ±5 
4m = – 3 ± 1, –3 ± 5 
4m = – 4, –2, –8, 2 
m = –1, ?
1
2
, – 2, 
1
2
 
Two integral value of m  
 
Page 4


 
 
18
th
 March. 2021 | Shift 1
 
SECTION – A 
 
1. If the functions are defined as f(x) = x and g(x) = ? 1 x, then what is the common domain of the following 
functions : f + g, f – g, f/g, g/f, g – f where (f ± g) (x) = f(x) ± g(x), (f/g) (x) = 
f(x)
g(x)
 
 (1) 0 < x ? 1 
 
(2) 0 ? x ? 1 
 (3) 0 ? x ? 1 
 
(4) 0 < x < 1 
Ans. (4)  
Sol. f + g   = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f – g    = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f/g = 
?
x
1 x
 
  ? ? ? ? ? ? x 0 & 1 x 0 x [0,1) 
 g/f =
? 1 x
x
 
  ? ? ? ? ? ? 1 x 0 & x 0 x (0,1] 
 g – f = ? ? 1 x x 
  ? ? ? ? ? ? 1 x 0 & x 0 x [0,1] 
  ? ? x (0,1) 
 
2. Let ?, ?, ? be the roots of the equations, x
3
 + ax
2
 + bx + c = 0, (a, b, c ? R and a, b  and a, b ? 0). If the system 
of the equations (in u, v, w) given by ?u + ?v + ?w = 0; ?u + ?v + ?w = 0; ?u + ?v + ?w = 0 has non-trivial 
solutions, then the value of 
2
a
b
 is  
 (1) 5 
 
(2) 1 
 (3) 0  
 
(4) 3 
Ans. (4)  
 
 
Sol. x
3
 + ax
2
 + bx + c = 0 
   
 
 For non-trivial solutions, 
 
? ? ?
? ? ? ?
? ? ?
0 
 ?
3
 + ?
3
 + ?
3
 – 3 ? ? ? = 0  
 ? ? ? ? ? ?
? ?
? ? ? ? ? ? ? ? ? ? ? ? ?? ?
? ?
? ?
2
3 0 
 (–a) [a
2
 – 3b] = 0 
 a
2
 = 3b  ? ? ? a 0 ? 
 ? ?
2
a
3
b
 
 
3. If the equation ? ? ? ? ? ?
2
a| z| z z d 0 represents a circle where a, d are real constants, then which of the 
following condition is correct? 
 (1) ? ? ?
2
| | ad 0 
 
(2) ? ? ? ? ?
2
| | ad 0anda R {0} 
 (3) 
?
? ? ? 0,a,d R 
 
(4) ? ? ? ?
2
| | ad 0and a R 
Ans. (2)  
Sol. ? ? ? ? ? ?
2
a| z| z z d 0
 
 
? ?
? ?
? ? ? ?
? ? ?
? ? ? ? ? ?
? ?
? ?
? ? ?
? ? ? ?
? ?
d
zz z z 0
a a a
 
 Centre = –
?
a
 
 r = 
?
?
2
d
a a
 
    
?
? ?
2
d
a a
 
   ? ? ?
2
ad 
 
?
? ?
?
 
 
18
th
 March. 2021 | Shift 1
4. ? ? ? ?
? ? ? ?
2 2 2 2
1 1 1 1
.....
3 1 5 1 7 1 (201) 1
 is equal to: 
 (1) 
101
404
 
 
(2) 
101
408
 
 (3) 
99
400
 
 
(4) 
25
101
  
Ans. (4)  
Sol. 
? ?
? ?
? ? ? ?
? ?
100 100
2
r 1 r 1
1 1
S
(2r 2) 2(r) (2r 1) 1
 
 
?
? ?
? ? ? ? ?
? ?
?
? ?
?
100
r 1
1 1 1
S
4 r r 1
 
 
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
1 1 1 1 1 1 1 1
S 1 ....
4 2 2 3 3 4 100 101
 
 
? ?
? ? ? ? ?
? ?
? ?
1 100 25
S
4 101 101
 
 
5. The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9 and y = mx 
+ 1 is also an integer, is: 
 (1) 3 
 
(2) 2 
 (3) 1 
 
(4) 0 
Ans. (2)  
Sol. 3x + 4(mx + 1) = 9 
x(3 + 4m) = 5 
?
?
5
x
(3 4m)
 
(3 + 4m) = ±1, ±5 
4m = – 3 ± 1, –3 ± 5 
4m = – 4, –2, –8, 2 
m = –1, ?
1
2
, – 2, 
1
2
 
Two integral value of m  
 
 
 
6. The solutions of the equation 
?
? ? ? ? ?
?
2 2 2
2 2 2
1 sin x sin x sin x
cos x 1 cos x cos x 0,(0 x ),
4sin2x 4sin2x 1 4sin2x
 are: 
 (1) 
? ? 5
,
6 6
 
 
(2) 
? ? 7 11
,
12 12
 
 (3) 
? ? 5 7
,
12 12
 
 
(4) 
? ?
,
12 6
 
Ans. (2)  
Sol. R
1
 ? R
1
 + R
2
 
 ? ?
?
2 2 2
2 2 1
cos x 1 cos x cos x 0
4sin2x 4sin2x 1 4sin2x
 
 C
1
 ? C
1
 – C
2
 
 ? ? ?
?
2 2
0 2 1
1 1 cos x cos x 0
0 4sin2x 1 4sin2x
 
 ? 2 + 8sin2x – 4sin2x = 0 
 ? sin2x = ?
1
2
    ? x = 
? ? 7 11
,
12 12
 
 
7. If 
?
?
?
?
?
?
?
?
?
?
? ? ?
? ?
2
1
; | x | 1
f(x) | x |
ax b ; | x | 1
 is differentiable at every point of the domain, then the values of a and b are 
respectively: 
 (1) ?
5 3
,
2 2
 
 
(2) ?
1 3
,
2 2
 
 (3) 
1 1
,
2 2
 
 
(4) ?
1 3
,
2 2
 
Ans. (2)  
Sol. f(x) is continuous at x = 1 ? 1 = a + b 
 f(x) is differentiable at x = 1 ? –1 = 2a 
 ? ? ? ? ?
1 3
a b
2 2
 
 
Page 5


 
 
18
th
 March. 2021 | Shift 1
 
SECTION – A 
 
1. If the functions are defined as f(x) = x and g(x) = ? 1 x, then what is the common domain of the following 
functions : f + g, f – g, f/g, g/f, g – f where (f ± g) (x) = f(x) ± g(x), (f/g) (x) = 
f(x)
g(x)
 
 (1) 0 < x ? 1 
 
(2) 0 ? x ? 1 
 (3) 0 ? x ? 1 
 
(4) 0 < x < 1 
Ans. (4)  
Sol. f + g   = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f – g    = ? ? x 1 x 
    ? ? ? ? ? ? x 0 & 1 x 0 x [0,1] 
 f/g = 
?
x
1 x
 
  ? ? ? ? ? ? x 0 & 1 x 0 x [0,1) 
 g/f =
? 1 x
x
 
  ? ? ? ? ? ? 1 x 0 & x 0 x (0,1] 
 g – f = ? ? 1 x x 
  ? ? ? ? ? ? 1 x 0 & x 0 x [0,1] 
  ? ? x (0,1) 
 
2. Let ?, ?, ? be the roots of the equations, x
3
 + ax
2
 + bx + c = 0, (a, b, c ? R and a, b  and a, b ? 0). If the system 
of the equations (in u, v, w) given by ?u + ?v + ?w = 0; ?u + ?v + ?w = 0; ?u + ?v + ?w = 0 has non-trivial 
solutions, then the value of 
2
a
b
 is  
 (1) 5 
 
(2) 1 
 (3) 0  
 
(4) 3 
Ans. (4)  
 
 
Sol. x
3
 + ax
2
 + bx + c = 0 
   
 
 For non-trivial solutions, 
 
? ? ?
? ? ? ?
? ? ?
0 
 ?
3
 + ?
3
 + ?
3
 – 3 ? ? ? = 0  
 ? ? ? ? ? ?
? ?
? ? ? ? ? ? ? ? ? ? ? ? ?? ?
? ?
? ?
2
3 0 
 (–a) [a
2
 – 3b] = 0 
 a
2
 = 3b  ? ? ? a 0 ? 
 ? ?
2
a
3
b
 
 
3. If the equation ? ? ? ? ? ?
2
a| z| z z d 0 represents a circle where a, d are real constants, then which of the 
following condition is correct? 
 (1) ? ? ?
2
| | ad 0 
 
(2) ? ? ? ? ?
2
| | ad 0anda R {0} 
 (3) 
?
? ? ? 0,a,d R 
 
(4) ? ? ? ?
2
| | ad 0and a R 
Ans. (2)  
Sol. ? ? ? ? ? ?
2
a| z| z z d 0
 
 
? ?
? ?
? ? ? ?
? ? ?
? ? ? ? ? ?
? ?
? ?
? ? ?
? ? ? ?
? ?
d
zz z z 0
a a a
 
 Centre = –
?
a
 
 r = 
?
?
2
d
a a
 
    
?
? ?
2
d
a a
 
   ? ? ?
2
ad 
 
?
? ?
?
 
 
18
th
 March. 2021 | Shift 1
4. ? ? ? ?
? ? ? ?
2 2 2 2
1 1 1 1
.....
3 1 5 1 7 1 (201) 1
 is equal to: 
 (1) 
101
404
 
 
(2) 
101
408
 
 (3) 
99
400
 
 
(4) 
25
101
  
Ans. (4)  
Sol. 
? ?
? ?
? ? ? ?
? ?
100 100
2
r 1 r 1
1 1
S
(2r 2) 2(r) (2r 1) 1
 
 
?
? ?
? ? ? ? ?
? ?
?
? ?
?
100
r 1
1 1 1
S
4 r r 1
 
 
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
1 1 1 1 1 1 1 1
S 1 ....
4 2 2 3 3 4 100 101
 
 
? ?
? ? ? ? ?
? ?
? ?
1 100 25
S
4 101 101
 
 
5. The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9 and y = mx 
+ 1 is also an integer, is: 
 (1) 3 
 
(2) 2 
 (3) 1 
 
(4) 0 
Ans. (2)  
Sol. 3x + 4(mx + 1) = 9 
x(3 + 4m) = 5 
?
?
5
x
(3 4m)
 
(3 + 4m) = ±1, ±5 
4m = – 3 ± 1, –3 ± 5 
4m = – 4, –2, –8, 2 
m = –1, ?
1
2
, – 2, 
1
2
 
Two integral value of m  
 
 
 
6. The solutions of the equation 
?
? ? ? ? ?
?
2 2 2
2 2 2
1 sin x sin x sin x
cos x 1 cos x cos x 0,(0 x ),
4sin2x 4sin2x 1 4sin2x
 are: 
 (1) 
? ? 5
,
6 6
 
 
(2) 
? ? 7 11
,
12 12
 
 (3) 
? ? 5 7
,
12 12
 
 
(4) 
? ?
,
12 6
 
Ans. (2)  
Sol. R
1
 ? R
1
 + R
2
 
 ? ?
?
2 2 2
2 2 1
cos x 1 cos x cos x 0
4sin2x 4sin2x 1 4sin2x
 
 C
1
 ? C
1
 – C
2
 
 ? ? ?
?
2 2
0 2 1
1 1 cos x cos x 0
0 4sin2x 1 4sin2x
 
 ? 2 + 8sin2x – 4sin2x = 0 
 ? sin2x = ?
1
2
    ? x = 
? ? 7 11
,
12 12
 
 
7. If 
?
?
?
?
?
?
?
?
?
?
? ? ?
? ?
2
1
; | x | 1
f(x) | x |
ax b ; | x | 1
 is differentiable at every point of the domain, then the values of a and b are 
respectively: 
 (1) ?
5 3
,
2 2
 
 
(2) ?
1 3
,
2 2
 
 (3) 
1 1
,
2 2
 
 
(4) ?
1 3
,
2 2
 
Ans. (2)  
Sol. f(x) is continuous at x = 1 ? 1 = a + b 
 f(x) is differentiable at x = 1 ? –1 = 2a 
 ? ? ? ? ?
1 3
a b
2 2
 
 
 
 
18
th
 March. 2021 | Shift 1
8. A vector a
?
 has components 3p and 1 with respect to a rectangular Cartesian system. This system is rotated 
through a certain angle about the origin in the counter clockwise sense. If with respect to new system, a
?
 has 
components p +1 and 10 , then a value of p is equal to:  
 (1) 1 
 
(2) –1 
 (3) 
4
5
 
 
(4) ?
5
4
 
Ans. (2)  
Sol. ?
old new
a a
? ?
 
 (3p)
2
 + 1 = (P+1)
2
 + 10 
 9p
2
 – p
2
 –2p – 10 = 0 
 8p
2
 –2p – 10 = 0  
4p
2
 – p – 5 = 0 
4p
2
 – 5p + 4p – 5 = 0 
(4p – 5) (p + 1) = 0 
p = 
5
,
4
 –1 
 
9. The sum of all the 4-digit distinct numbers that can be formed with the digits 1, 2, 2 and 3 is: 
 (1) 26664 
 
(2) 122664 
 (3) 122234 
 
(4) 22264 
Ans. (1)  
Sol. 1 2 2 3 
 1 2 3 2  
 1 3 2 2 
 3 1 2 2  
3 2 1 2 
 3 2 2 1 
 2 1 3 2  
 2 3 1 2 
 2 2 1 3 
 2 2 3 1 
 2 3 2 1 
 2 1 2 3 
 2  6  6  6  4 
Read More
357 docs|148 tests

Top Courses for JEE

357 docs|148 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

past year papers

,

practice quizzes

,

Objective type Questions

,

Extra Questions

,

Viva Questions

,

Exam

,

MCQs

,

Previous Year Questions with Solutions

,

mock tests for examination

,

JEE Main 2021 Mathematics March 18 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

ppt

,

JEE Main 2021 Mathematics March 18 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Semester Notes

,

video lectures

,

Free

,

shortcuts and tricks

,

pdf

,

Important questions

,

Summary

,

JEE Main 2021 Mathematics March 18 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

study material

;