JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2024 January 31 Shift 2 Paper & Solutions

JEE Main 2024 January 31 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Wednesday 31
st
 January, 2024)           TIME : 3 : 00 PM  to  6 : 00 PM 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
SECTION-A 
1. The number of ways in which 21 identical apples 
can be distributed among three children such that 
each child gets at least 2 apples, is 
 (1) 406 
 (2) 130 
 (3) 142 
 (4) 136 
Ans.  (4) 
Sol. After giving 2 apples to each child 15 apples left 
now 15 apples can be distributed in
15 3 1 17
22
CC
??
? 
ways  
 
17 16
136
2
?
?? 
2. Let A (a, b), B(3, 4) and (–6, –8) respectively 
denote the centroid, circumcentre and orthocentre 
of a triangle. Then, the distance of the point  
P(2a + 3, 7b + 5) from the line 2x + 3y – 4 = 0 
measured parallel to the line x – 2y – 1 = 0 is 
 (1) 
15 5
7
 
 (2) 
17 5
6
 
 (3) 
17 5
7
 
 (4) 
5
17
 
Ans.  (3) 
Sol. A(a,b),        B(3,4),      C(-6, -8) 
 
2 : 1
C
(-6, -8)
A
B
(3, 4)
(a, b)
 
 
? ? a 0, b = 0    P 3,5 ? ? ? 
 Distance from P measured along x – 2y – 1 = 0  
 x 3 rcos ,   y = 5+rsin ? ? ? ? ? 
 Where 
1
tan
2
?? 
 
? ? r 2cos 3sin 17
17 5 17 5
r
77
? ? ? ? ?
?
? ? ?
 
3. Let z
1
 and z
2
 be two complex number such that z
1
 
+ z
2
 = 5 and 
33
12
z z 20 15i ? ? ? . Then 
44
12
zz ?
equals- 
 (1) 30 3 
 (2) 75 
 (3) 15 15 
 (4) 25 3 
Ans.  (2) 
Sol.- 
12
z z 5 ?? 
 
33
12
z z 20 15i ? ? ? 
 ? ? ? ?
3
33
1 2 1 2 1 2 12
z z z z 3z z z z ? ? ? ? ?
? ?
33
12 12
z z 125 3z . z 5 ? ? ? 
 
12
20 15i 125 15z z ? ? ? ? 
 
12
3z z 25 4 3i ? ? ? ? 
 
12
3z z 21 3i ? ? ? 
 
12
z .z 7 i ? ? ? 
 ? ?
2
12
z z 25 ? ? ? 
 ? ?
22
12
z z 25 2 7 i ? ? ? ? ? 
 11 2i ?? 
 
? ?
2
22
12
z z 121 4 44i ? ? ? ? 
 ? ? ?
2
44
12
z z 2 7 i 117 44i ? ? ? ? ? 
 ?  ? ?
44
12
z z 117 44i 2 49 1 14i ? ? ? ? ? ? 
 ?  
44
12
z z 75 ?? 
 
Page 2


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Wednesday 31
st
 January, 2024)           TIME : 3 : 00 PM  to  6 : 00 PM 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
SECTION-A 
1. The number of ways in which 21 identical apples 
can be distributed among three children such that 
each child gets at least 2 apples, is 
 (1) 406 
 (2) 130 
 (3) 142 
 (4) 136 
Ans.  (4) 
Sol. After giving 2 apples to each child 15 apples left 
now 15 apples can be distributed in
15 3 1 17
22
CC
??
? 
ways  
 
17 16
136
2
?
?? 
2. Let A (a, b), B(3, 4) and (–6, –8) respectively 
denote the centroid, circumcentre and orthocentre 
of a triangle. Then, the distance of the point  
P(2a + 3, 7b + 5) from the line 2x + 3y – 4 = 0 
measured parallel to the line x – 2y – 1 = 0 is 
 (1) 
15 5
7
 
 (2) 
17 5
6
 
 (3) 
17 5
7
 
 (4) 
5
17
 
Ans.  (3) 
Sol. A(a,b),        B(3,4),      C(-6, -8) 
 
2 : 1
C
(-6, -8)
A
B
(3, 4)
(a, b)
 
 
? ? a 0, b = 0    P 3,5 ? ? ? 
 Distance from P measured along x – 2y – 1 = 0  
 x 3 rcos ,   y = 5+rsin ? ? ? ? ? 
 Where 
1
tan
2
?? 
 
? ? r 2cos 3sin 17
17 5 17 5
r
77
? ? ? ? ?
?
? ? ?
 
3. Let z
1
 and z
2
 be two complex number such that z
1
 
+ z
2
 = 5 and 
33
12
z z 20 15i ? ? ? . Then 
44
12
zz ?
equals- 
 (1) 30 3 
 (2) 75 
 (3) 15 15 
 (4) 25 3 
Ans.  (2) 
Sol.- 
12
z z 5 ?? 
 
33
12
z z 20 15i ? ? ? 
 ? ? ? ?
3
33
1 2 1 2 1 2 12
z z z z 3z z z z ? ? ? ? ?
? ?
33
12 12
z z 125 3z . z 5 ? ? ? 
 
12
20 15i 125 15z z ? ? ? ? 
 
12
3z z 25 4 3i ? ? ? ? 
 
12
3z z 21 3i ? ? ? 
 
12
z .z 7 i ? ? ? 
 ? ?
2
12
z z 25 ? ? ? 
 ? ?
22
12
z z 25 2 7 i ? ? ? ? ? 
 11 2i ?? 
 
? ?
2
22
12
z z 121 4 44i ? ? ? ? 
 ? ? ?
2
44
12
z z 2 7 i 117 44i ? ? ? ? ? 
 ?  ? ?
44
12
z z 117 44i 2 49 1 14i ? ? ? ? ? ? 
 ?  
44
12
z z 75 ?? 
 
 
4. Let a variable line passing through the centre of the 
circle x
2
 + y
2
 – 16x – 4y = 0, meet the positive  
co-ordinate axes at the point A and B. Then the 
minimum value of OA + OB, where O is the 
origin, is equal to  
 (1) 12 
 (2) 18 
 (3) 20 
 (4) 24 
Ans.  (2) 
Sol.- ? ? ? ? y 2 m x 8 ? ? ? 
 ? x-intercept  
 ? 
2
8
m
???
?
??
??
 
 ? y-intercept  
 ? ? ? 8m 2 ?? 
 
2
OA OB 8 8m 2
m
?
? ? ? ? ? ? 
 ? ?
2
2
f ' m 8 0
m
? ? ? 
 
2
1
m
4
?? 
 
1
m
2
?
?? 
 
1
f 18
2
? ??
??
??
??
 
 ? Minimum = 18 
 
5. Let f,g :(0, ) R ?? be two functions defined by 
? ?
2 x
2t
x
f (x) t t e dt
?
?
??
?
and 
2
x 1
t
2
0
g(x) t e dt
?
?
?
. 
Then the value of 
? ? ? ? ? ? ee
f log 9 g log 9 ? is 
equal to 
 (1) 6 
 (2) 9 
 (3) 8 
 (4) 10 
Ans. (3) 
 
Sol.-  
 
? ? ? ?
? ? ? ? ? ?
? ?
? ? ? ?
? ? ? ?
2
2
2
2
2 2 2
x
2t
x
2x
x 1
t
2
0
x
x 2 x 2 x
f x t t e dt
f x 2. x x e ............ 1
g x t e dt
g x xe 2x 0
f x g x 2xe 2x e 2x e
?
?
?
?
?
? ? ?
??
? ? ? ?
?
???
?? ? ? ? ?
?
?
 
 Integrating both sides w.r.t.x 
 
? ? ? ?
? ?
? ?
? ?
2
1
e
x
0
2
tt
0
0
log 9 1
f x g x 2xe dx
xt
e dt  e
e
1
9 f (x) g(x) 1 9 8
9
?
?
?
?
?
??
?
??
?
?? ? ? ?
??
??
??
? ? ? ? ?
??
??
?
?
 
6. Let 
? ? ,, ? ? ? be mirror image of the point (2, 3, 5) 
in the line 
x 1 y 2 z 3
2 3 4
? ? ?
?? .  
 Then 2 3 4 ? ? ? ? ? is equal to 
 (1) 32 
 (2) 33 
 (3) 31 
 (4) 34 
Ans.  (2) 
Sol.  
 
P(2,3,5)
? ? R , , ? ? ?
 
 
? ?
? ?
? ? ? ?
PR 2,3, 4
PR. 2,3, 4 0
2, 3, 5 . 2,3, 4 0
2 3 4 4 9 20 33
?
??
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
 
  
Page 3


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Wednesday 31
st
 January, 2024)           TIME : 3 : 00 PM  to  6 : 00 PM 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
SECTION-A 
1. The number of ways in which 21 identical apples 
can be distributed among three children such that 
each child gets at least 2 apples, is 
 (1) 406 
 (2) 130 
 (3) 142 
 (4) 136 
Ans.  (4) 
Sol. After giving 2 apples to each child 15 apples left 
now 15 apples can be distributed in
15 3 1 17
22
CC
??
? 
ways  
 
17 16
136
2
?
?? 
2. Let A (a, b), B(3, 4) and (–6, –8) respectively 
denote the centroid, circumcentre and orthocentre 
of a triangle. Then, the distance of the point  
P(2a + 3, 7b + 5) from the line 2x + 3y – 4 = 0 
measured parallel to the line x – 2y – 1 = 0 is 
 (1) 
15 5
7
 
 (2) 
17 5
6
 
 (3) 
17 5
7
 
 (4) 
5
17
 
Ans.  (3) 
Sol. A(a,b),        B(3,4),      C(-6, -8) 
 
2 : 1
C
(-6, -8)
A
B
(3, 4)
(a, b)
 
 
? ? a 0, b = 0    P 3,5 ? ? ? 
 Distance from P measured along x – 2y – 1 = 0  
 x 3 rcos ,   y = 5+rsin ? ? ? ? ? 
 Where 
1
tan
2
?? 
 
? ? r 2cos 3sin 17
17 5 17 5
r
77
? ? ? ? ?
?
? ? ?
 
3. Let z
1
 and z
2
 be two complex number such that z
1
 
+ z
2
 = 5 and 
33
12
z z 20 15i ? ? ? . Then 
44
12
zz ?
equals- 
 (1) 30 3 
 (2) 75 
 (3) 15 15 
 (4) 25 3 
Ans.  (2) 
Sol.- 
12
z z 5 ?? 
 
33
12
z z 20 15i ? ? ? 
 ? ? ? ?
3
33
1 2 1 2 1 2 12
z z z z 3z z z z ? ? ? ? ?
? ?
33
12 12
z z 125 3z . z 5 ? ? ? 
 
12
20 15i 125 15z z ? ? ? ? 
 
12
3z z 25 4 3i ? ? ? ? 
 
12
3z z 21 3i ? ? ? 
 
12
z .z 7 i ? ? ? 
 ? ?
2
12
z z 25 ? ? ? 
 ? ?
22
12
z z 25 2 7 i ? ? ? ? ? 
 11 2i ?? 
 
? ?
2
22
12
z z 121 4 44i ? ? ? ? 
 ? ? ?
2
44
12
z z 2 7 i 117 44i ? ? ? ? ? 
 ?  ? ?
44
12
z z 117 44i 2 49 1 14i ? ? ? ? ? ? 
 ?  
44
12
z z 75 ?? 
 
 
4. Let a variable line passing through the centre of the 
circle x
2
 + y
2
 – 16x – 4y = 0, meet the positive  
co-ordinate axes at the point A and B. Then the 
minimum value of OA + OB, where O is the 
origin, is equal to  
 (1) 12 
 (2) 18 
 (3) 20 
 (4) 24 
Ans.  (2) 
Sol.- ? ? ? ? y 2 m x 8 ? ? ? 
 ? x-intercept  
 ? 
2
8
m
???
?
??
??
 
 ? y-intercept  
 ? ? ? 8m 2 ?? 
 
2
OA OB 8 8m 2
m
?
? ? ? ? ? ? 
 ? ?
2
2
f ' m 8 0
m
? ? ? 
 
2
1
m
4
?? 
 
1
m
2
?
?? 
 
1
f 18
2
? ??
??
??
??
 
 ? Minimum = 18 
 
5. Let f,g :(0, ) R ?? be two functions defined by 
? ?
2 x
2t
x
f (x) t t e dt
?
?
??
?
and 
2
x 1
t
2
0
g(x) t e dt
?
?
?
. 
Then the value of 
? ? ? ? ? ? ee
f log 9 g log 9 ? is 
equal to 
 (1) 6 
 (2) 9 
 (3) 8 
 (4) 10 
Ans. (3) 
 
Sol.-  
 
? ? ? ?
? ? ? ? ? ?
? ?
? ? ? ?
? ? ? ?
2
2
2
2
2 2 2
x
2t
x
2x
x 1
t
2
0
x
x 2 x 2 x
f x t t e dt
f x 2. x x e ............ 1
g x t e dt
g x xe 2x 0
f x g x 2xe 2x e 2x e
?
?
?
?
?
? ? ?
??
? ? ? ?
?
???
?? ? ? ? ?
?
?
 
 Integrating both sides w.r.t.x 
 
? ? ? ?
? ?
? ?
? ?
2
1
e
x
0
2
tt
0
0
log 9 1
f x g x 2xe dx
xt
e dt  e
e
1
9 f (x) g(x) 1 9 8
9
?
?
?
?
?
??
?
??
?
?? ? ? ?
??
??
??
? ? ? ? ?
??
??
?
?
 
6. Let 
? ? ,, ? ? ? be mirror image of the point (2, 3, 5) 
in the line 
x 1 y 2 z 3
2 3 4
? ? ?
?? .  
 Then 2 3 4 ? ? ? ? ? is equal to 
 (1) 32 
 (2) 33 
 (3) 31 
 (4) 34 
Ans.  (2) 
Sol.  
 
P(2,3,5)
? ? R , , ? ? ?
 
 
? ?
? ?
? ? ? ?
PR 2,3, 4
PR. 2,3, 4 0
2, 3, 5 . 2,3, 4 0
2 3 4 4 9 20 33
?
??
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
 
  
7. Let P be a parabola with vertex (2, 3) and directrix 
2x + y = 6. Let an ellipse 
22
22
xy
E : 1,a b
ab
? ? ? of 
eccentricity 
1
2
 pass through the focus of the 
parabola P. Then the square of the length of the 
latus rectum of E, is 
 (1) 
385
8
 
 (2) 
347
8
 
 (3) 
512
25
 
 (4) 
656
25
 
Ans.  (4) 
Sol.- 
 
Focur
axis
(2, 3)
( , ) ? ?
(1.6, 2.8)
 
 Slope of axis 
1
2
? 
 ? ?
1
y 3 x 2
2
? ? ? 
 2y 6 x 2 ? ? ? ? 
 2y x 4 0 ? ? ? ? 
 2x y 6 0 ? ? ? 
 4x 2y 12 0 ? ? ? 
 1.6 4 2.4 ? ? ? ? ? ? 
 2.8 6 3.2 ? ? ? ? ? ? 
 Ellipse passes through (2.4, 3.2)  
 
22
22
24 32
10 10
1
ab
? ? ? ?
? ? ? ?
? ? ? ?
? ? ?    ……….(1) 
 Also 
22
22
b 1 b 1
1
a 2 a 2
? ? ? ? 
 
22
a 2b ?? 
 Put in (1) 
2
328
b
25
?? 
 
2
22
2
2
2b 4b 1 328 656
b4
a a 2 25 25
??
? ? ? ? ? ? ?
??
??
 
 
8. The temperature T(t) of a body at time t = 0 is 160
o
 
F and it decreases continuously as per the 
differential equation 
dT
K(T 80)
dt
? ? ? , where K 
is positive constant. If T(15) = 120
o
F, then T(45) is 
equal to 
 (1) 85
o 
F 
 (2) 95
o 
F 
 (3) 90
o 
F 
 (4) 80
o 
F 
Ans.  (3) 
Sol.-  
 
? ?
? ?
? ?
? ?
Tt
160 0
T
160
kt
k.15
k15
k.45
3
k.15
dT
k T 80
dt
dT
Kdt
T 80
ln T 80 kt
ln T 80 ln 80 kt
T 80
ln kt
80
T 80 80e
120 80 80e
40 1
e
80 2
T 45 80 80e
80 80 e
1
80 80
8
90
?
?
?
?
?
? ? ?
??
?
? ? ? ? ?
??
? ? ? ?
?
??
??
??
??
? ? ?
??
? ? ?
?
??
  
Page 4


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Wednesday 31
st
 January, 2024)           TIME : 3 : 00 PM  to  6 : 00 PM 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
SECTION-A 
1. The number of ways in which 21 identical apples 
can be distributed among three children such that 
each child gets at least 2 apples, is 
 (1) 406 
 (2) 130 
 (3) 142 
 (4) 136 
Ans.  (4) 
Sol. After giving 2 apples to each child 15 apples left 
now 15 apples can be distributed in
15 3 1 17
22
CC
??
? 
ways  
 
17 16
136
2
?
?? 
2. Let A (a, b), B(3, 4) and (–6, –8) respectively 
denote the centroid, circumcentre and orthocentre 
of a triangle. Then, the distance of the point  
P(2a + 3, 7b + 5) from the line 2x + 3y – 4 = 0 
measured parallel to the line x – 2y – 1 = 0 is 
 (1) 
15 5
7
 
 (2) 
17 5
6
 
 (3) 
17 5
7
 
 (4) 
5
17
 
Ans.  (3) 
Sol. A(a,b),        B(3,4),      C(-6, -8) 
 
2 : 1
C
(-6, -8)
A
B
(3, 4)
(a, b)
 
 
? ? a 0, b = 0    P 3,5 ? ? ? 
 Distance from P measured along x – 2y – 1 = 0  
 x 3 rcos ,   y = 5+rsin ? ? ? ? ? 
 Where 
1
tan
2
?? 
 
? ? r 2cos 3sin 17
17 5 17 5
r
77
? ? ? ? ?
?
? ? ?
 
3. Let z
1
 and z
2
 be two complex number such that z
1
 
+ z
2
 = 5 and 
33
12
z z 20 15i ? ? ? . Then 
44
12
zz ?
equals- 
 (1) 30 3 
 (2) 75 
 (3) 15 15 
 (4) 25 3 
Ans.  (2) 
Sol.- 
12
z z 5 ?? 
 
33
12
z z 20 15i ? ? ? 
 ? ? ? ?
3
33
1 2 1 2 1 2 12
z z z z 3z z z z ? ? ? ? ?
? ?
33
12 12
z z 125 3z . z 5 ? ? ? 
 
12
20 15i 125 15z z ? ? ? ? 
 
12
3z z 25 4 3i ? ? ? ? 
 
12
3z z 21 3i ? ? ? 
 
12
z .z 7 i ? ? ? 
 ? ?
2
12
z z 25 ? ? ? 
 ? ?
22
12
z z 25 2 7 i ? ? ? ? ? 
 11 2i ?? 
 
? ?
2
22
12
z z 121 4 44i ? ? ? ? 
 ? ? ?
2
44
12
z z 2 7 i 117 44i ? ? ? ? ? 
 ?  ? ?
44
12
z z 117 44i 2 49 1 14i ? ? ? ? ? ? 
 ?  
44
12
z z 75 ?? 
 
 
4. Let a variable line passing through the centre of the 
circle x
2
 + y
2
 – 16x – 4y = 0, meet the positive  
co-ordinate axes at the point A and B. Then the 
minimum value of OA + OB, where O is the 
origin, is equal to  
 (1) 12 
 (2) 18 
 (3) 20 
 (4) 24 
Ans.  (2) 
Sol.- ? ? ? ? y 2 m x 8 ? ? ? 
 ? x-intercept  
 ? 
2
8
m
???
?
??
??
 
 ? y-intercept  
 ? ? ? 8m 2 ?? 
 
2
OA OB 8 8m 2
m
?
? ? ? ? ? ? 
 ? ?
2
2
f ' m 8 0
m
? ? ? 
 
2
1
m
4
?? 
 
1
m
2
?
?? 
 
1
f 18
2
? ??
??
??
??
 
 ? Minimum = 18 
 
5. Let f,g :(0, ) R ?? be two functions defined by 
? ?
2 x
2t
x
f (x) t t e dt
?
?
??
?
and 
2
x 1
t
2
0
g(x) t e dt
?
?
?
. 
Then the value of 
? ? ? ? ? ? ee
f log 9 g log 9 ? is 
equal to 
 (1) 6 
 (2) 9 
 (3) 8 
 (4) 10 
Ans. (3) 
 
Sol.-  
 
? ? ? ?
? ? ? ? ? ?
? ?
? ? ? ?
? ? ? ?
2
2
2
2
2 2 2
x
2t
x
2x
x 1
t
2
0
x
x 2 x 2 x
f x t t e dt
f x 2. x x e ............ 1
g x t e dt
g x xe 2x 0
f x g x 2xe 2x e 2x e
?
?
?
?
?
? ? ?
??
? ? ? ?
?
???
?? ? ? ? ?
?
?
 
 Integrating both sides w.r.t.x 
 
? ? ? ?
? ?
? ?
? ?
2
1
e
x
0
2
tt
0
0
log 9 1
f x g x 2xe dx
xt
e dt  e
e
1
9 f (x) g(x) 1 9 8
9
?
?
?
?
?
??
?
??
?
?? ? ? ?
??
??
??
? ? ? ? ?
??
??
?
?
 
6. Let 
? ? ,, ? ? ? be mirror image of the point (2, 3, 5) 
in the line 
x 1 y 2 z 3
2 3 4
? ? ?
?? .  
 Then 2 3 4 ? ? ? ? ? is equal to 
 (1) 32 
 (2) 33 
 (3) 31 
 (4) 34 
Ans.  (2) 
Sol.  
 
P(2,3,5)
? ? R , , ? ? ?
 
 
? ?
? ?
? ? ? ?
PR 2,3, 4
PR. 2,3, 4 0
2, 3, 5 . 2,3, 4 0
2 3 4 4 9 20 33
?
??
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
 
  
7. Let P be a parabola with vertex (2, 3) and directrix 
2x + y = 6. Let an ellipse 
22
22
xy
E : 1,a b
ab
? ? ? of 
eccentricity 
1
2
 pass through the focus of the 
parabola P. Then the square of the length of the 
latus rectum of E, is 
 (1) 
385
8
 
 (2) 
347
8
 
 (3) 
512
25
 
 (4) 
656
25
 
Ans.  (4) 
Sol.- 
 
Focur
axis
(2, 3)
( , ) ? ?
(1.6, 2.8)
 
 Slope of axis 
1
2
? 
 ? ?
1
y 3 x 2
2
? ? ? 
 2y 6 x 2 ? ? ? ? 
 2y x 4 0 ? ? ? ? 
 2x y 6 0 ? ? ? 
 4x 2y 12 0 ? ? ? 
 1.6 4 2.4 ? ? ? ? ? ? 
 2.8 6 3.2 ? ? ? ? ? ? 
 Ellipse passes through (2.4, 3.2)  
 
22
22
24 32
10 10
1
ab
? ? ? ?
? ? ? ?
? ? ? ?
? ? ?    ……….(1) 
 Also 
22
22
b 1 b 1
1
a 2 a 2
? ? ? ? 
 
22
a 2b ?? 
 Put in (1) 
2
328
b
25
?? 
 
2
22
2
2
2b 4b 1 328 656
b4
a a 2 25 25
??
? ? ? ? ? ? ?
??
??
 
 
8. The temperature T(t) of a body at time t = 0 is 160
o
 
F and it decreases continuously as per the 
differential equation 
dT
K(T 80)
dt
? ? ? , where K 
is positive constant. If T(15) = 120
o
F, then T(45) is 
equal to 
 (1) 85
o 
F 
 (2) 95
o 
F 
 (3) 90
o 
F 
 (4) 80
o 
F 
Ans.  (3) 
Sol.-  
 
? ?
? ?
? ?
? ?
Tt
160 0
T
160
kt
k.15
k15
k.45
3
k.15
dT
k T 80
dt
dT
Kdt
T 80
ln T 80 kt
ln T 80 ln 80 kt
T 80
ln kt
80
T 80 80e
120 80 80e
40 1
e
80 2
T 45 80 80e
80 80 e
1
80 80
8
90
?
?
?
?
?
? ? ?
??
?
? ? ? ? ?
??
? ? ? ?
?
??
??
??
??
? ? ?
??
? ? ?
?
??
  
 
9. Let 2
nd
, 8
th
 and 44
th
, terms of a non-constant A.P. 
be respectively the 1
st
, 2
nd
 and 3
rd
 terms of G.P. If 
the first term of A.P. is 1 then the sum of first  
20 terms is equal to-  
 (1) 980 (2) 960 
 (3) 990  (4) 970 
Ans.  (4) 
Sol.- 1 + d,   1 + 7d,  1 + 43d are in GP 
 (1 + 7d)
2
 = (1 + d) (1 + 43d) 
 1 + 49d
2
 + 14d = 1 + 44 d + 43d
2
  
 6d
2
 – 30d = 0 
 d = 5 
 
? ?
? ?
20
20
S 2 1 20 1 5
2
     =10 2 95
     =970
? ? ? ? ? ??
??
?  
10. Let f : R (0, ) ? ? ? be strictly increasing 
function such that 
x
f (7x)
lim 1
f (x)
??
? . Then, the value 
of 
x
f (5x)
lim 1
f (x)
??
??
?
??
??
 is equal to  
 (1) 4 
 (2) 0 
 (3) 7/5 
 (4) 1 
Ans.  (2) 
Sol.- f : R (0, ) ?? 
 
? ?
? ?
x
f 7x
lim 1
fx
??
?  
 f is increasing  
 
? ? ? ? ? ? f x f 5x f 7x ? ? ? 
 
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
x
f x f 5x f 7x
f x f x f x
f 5x
1 lim 1
fx
f 5x
1
fx
1 1 0
??
??
??
??
??
??
??
? ? ?
 
11. The area of the region enclosed by the parabola  
y = 4x – x
2
 and 3y = (x – 4)
2
 is equal to 
 (1) 
32
9
 
 (2) 4 
 (3) 6 
 (4) 
14
3
 
Ans.  (3) 
Sol.-  
  
 Area ? ?
? ?
2
4
2
1
x4
4x x dx
3
??
?
?? ? ? ?
??
??
?
 
 Area 
? ?
4
3
23
1
x4
4x x
2 3 9
?
? ? ? 
 
64 64 4 1 27
2 3 2 3 9
??
? ? ? ? ?
??
??
 
 
? ? 27 21 6 ? ? ? 
12. Let the mean and the variance of 6 observation a, 
b, 68, 44, 48, 60 be 55 and 194, respectively if  
a > b, then a + 3b is 
 (1) 200 
 (2) 190 
 (3) 180 
 (4) 210 
Ans.  (3) 
Sol.- a, b, 68, 44, 48, 60 
 Mean = 55      a > b 
 Variance = 194 a + 3b 
 
a b 68 44 48 60
55
6
220 a b 330    
 a b 110......(1)
? ? ? ? ?
?
? ? ? ?
? ? ?
 
Page 5


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Wednesday 31
st
 January, 2024)           TIME : 3 : 00 PM  to  6 : 00 PM 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
SECTION-A 
1. The number of ways in which 21 identical apples 
can be distributed among three children such that 
each child gets at least 2 apples, is 
 (1) 406 
 (2) 130 
 (3) 142 
 (4) 136 
Ans.  (4) 
Sol. After giving 2 apples to each child 15 apples left 
now 15 apples can be distributed in
15 3 1 17
22
CC
??
? 
ways  
 
17 16
136
2
?
?? 
2. Let A (a, b), B(3, 4) and (–6, –8) respectively 
denote the centroid, circumcentre and orthocentre 
of a triangle. Then, the distance of the point  
P(2a + 3, 7b + 5) from the line 2x + 3y – 4 = 0 
measured parallel to the line x – 2y – 1 = 0 is 
 (1) 
15 5
7
 
 (2) 
17 5
6
 
 (3) 
17 5
7
 
 (4) 
5
17
 
Ans.  (3) 
Sol. A(a,b),        B(3,4),      C(-6, -8) 
 
2 : 1
C
(-6, -8)
A
B
(3, 4)
(a, b)
 
 
? ? a 0, b = 0    P 3,5 ? ? ? 
 Distance from P measured along x – 2y – 1 = 0  
 x 3 rcos ,   y = 5+rsin ? ? ? ? ? 
 Where 
1
tan
2
?? 
 
? ? r 2cos 3sin 17
17 5 17 5
r
77
? ? ? ? ?
?
? ? ?
 
3. Let z
1
 and z
2
 be two complex number such that z
1
 
+ z
2
 = 5 and 
33
12
z z 20 15i ? ? ? . Then 
44
12
zz ?
equals- 
 (1) 30 3 
 (2) 75 
 (3) 15 15 
 (4) 25 3 
Ans.  (2) 
Sol.- 
12
z z 5 ?? 
 
33
12
z z 20 15i ? ? ? 
 ? ? ? ?
3
33
1 2 1 2 1 2 12
z z z z 3z z z z ? ? ? ? ?
? ?
33
12 12
z z 125 3z . z 5 ? ? ? 
 
12
20 15i 125 15z z ? ? ? ? 
 
12
3z z 25 4 3i ? ? ? ? 
 
12
3z z 21 3i ? ? ? 
 
12
z .z 7 i ? ? ? 
 ? ?
2
12
z z 25 ? ? ? 
 ? ?
22
12
z z 25 2 7 i ? ? ? ? ? 
 11 2i ?? 
 
? ?
2
22
12
z z 121 4 44i ? ? ? ? 
 ? ? ?
2
44
12
z z 2 7 i 117 44i ? ? ? ? ? 
 ?  ? ?
44
12
z z 117 44i 2 49 1 14i ? ? ? ? ? ? 
 ?  
44
12
z z 75 ?? 
 
 
4. Let a variable line passing through the centre of the 
circle x
2
 + y
2
 – 16x – 4y = 0, meet the positive  
co-ordinate axes at the point A and B. Then the 
minimum value of OA + OB, where O is the 
origin, is equal to  
 (1) 12 
 (2) 18 
 (3) 20 
 (4) 24 
Ans.  (2) 
Sol.- ? ? ? ? y 2 m x 8 ? ? ? 
 ? x-intercept  
 ? 
2
8
m
???
?
??
??
 
 ? y-intercept  
 ? ? ? 8m 2 ?? 
 
2
OA OB 8 8m 2
m
?
? ? ? ? ? ? 
 ? ?
2
2
f ' m 8 0
m
? ? ? 
 
2
1
m
4
?? 
 
1
m
2
?
?? 
 
1
f 18
2
? ??
??
??
??
 
 ? Minimum = 18 
 
5. Let f,g :(0, ) R ?? be two functions defined by 
? ?
2 x
2t
x
f (x) t t e dt
?
?
??
?
and 
2
x 1
t
2
0
g(x) t e dt
?
?
?
. 
Then the value of 
? ? ? ? ? ? ee
f log 9 g log 9 ? is 
equal to 
 (1) 6 
 (2) 9 
 (3) 8 
 (4) 10 
Ans. (3) 
 
Sol.-  
 
? ? ? ?
? ? ? ? ? ?
? ?
? ? ? ?
? ? ? ?
2
2
2
2
2 2 2
x
2t
x
2x
x 1
t
2
0
x
x 2 x 2 x
f x t t e dt
f x 2. x x e ............ 1
g x t e dt
g x xe 2x 0
f x g x 2xe 2x e 2x e
?
?
?
?
?
? ? ?
??
? ? ? ?
?
???
?? ? ? ? ?
?
?
 
 Integrating both sides w.r.t.x 
 
? ? ? ?
? ?
? ?
? ?
2
1
e
x
0
2
tt
0
0
log 9 1
f x g x 2xe dx
xt
e dt  e
e
1
9 f (x) g(x) 1 9 8
9
?
?
?
?
?
??
?
??
?
?? ? ? ?
??
??
??
? ? ? ? ?
??
??
?
?
 
6. Let 
? ? ,, ? ? ? be mirror image of the point (2, 3, 5) 
in the line 
x 1 y 2 z 3
2 3 4
? ? ?
?? .  
 Then 2 3 4 ? ? ? ? ? is equal to 
 (1) 32 
 (2) 33 
 (3) 31 
 (4) 34 
Ans.  (2) 
Sol.  
 
P(2,3,5)
? ? R , , ? ? ?
 
 
? ?
? ?
? ? ? ?
PR 2,3, 4
PR. 2,3, 4 0
2, 3, 5 . 2,3, 4 0
2 3 4 4 9 20 33
?
??
? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
 
  
7. Let P be a parabola with vertex (2, 3) and directrix 
2x + y = 6. Let an ellipse 
22
22
xy
E : 1,a b
ab
? ? ? of 
eccentricity 
1
2
 pass through the focus of the 
parabola P. Then the square of the length of the 
latus rectum of E, is 
 (1) 
385
8
 
 (2) 
347
8
 
 (3) 
512
25
 
 (4) 
656
25
 
Ans.  (4) 
Sol.- 
 
Focur
axis
(2, 3)
( , ) ? ?
(1.6, 2.8)
 
 Slope of axis 
1
2
? 
 ? ?
1
y 3 x 2
2
? ? ? 
 2y 6 x 2 ? ? ? ? 
 2y x 4 0 ? ? ? ? 
 2x y 6 0 ? ? ? 
 4x 2y 12 0 ? ? ? 
 1.6 4 2.4 ? ? ? ? ? ? 
 2.8 6 3.2 ? ? ? ? ? ? 
 Ellipse passes through (2.4, 3.2)  
 
22
22
24 32
10 10
1
ab
? ? ? ?
? ? ? ?
? ? ? ?
? ? ?    ……….(1) 
 Also 
22
22
b 1 b 1
1
a 2 a 2
? ? ? ? 
 
22
a 2b ?? 
 Put in (1) 
2
328
b
25
?? 
 
2
22
2
2
2b 4b 1 328 656
b4
a a 2 25 25
??
? ? ? ? ? ? ?
??
??
 
 
8. The temperature T(t) of a body at time t = 0 is 160
o
 
F and it decreases continuously as per the 
differential equation 
dT
K(T 80)
dt
? ? ? , where K 
is positive constant. If T(15) = 120
o
F, then T(45) is 
equal to 
 (1) 85
o 
F 
 (2) 95
o 
F 
 (3) 90
o 
F 
 (4) 80
o 
F 
Ans.  (3) 
Sol.-  
 
? ?
? ?
? ?
? ?
Tt
160 0
T
160
kt
k.15
k15
k.45
3
k.15
dT
k T 80
dt
dT
Kdt
T 80
ln T 80 kt
ln T 80 ln 80 kt
T 80
ln kt
80
T 80 80e
120 80 80e
40 1
e
80 2
T 45 80 80e
80 80 e
1
80 80
8
90
?
?
?
?
?
? ? ?
??
?
? ? ? ? ?
??
? ? ? ?
?
??
??
??
??
? ? ?
??
? ? ?
?
??
  
 
9. Let 2
nd
, 8
th
 and 44
th
, terms of a non-constant A.P. 
be respectively the 1
st
, 2
nd
 and 3
rd
 terms of G.P. If 
the first term of A.P. is 1 then the sum of first  
20 terms is equal to-  
 (1) 980 (2) 960 
 (3) 990  (4) 970 
Ans.  (4) 
Sol.- 1 + d,   1 + 7d,  1 + 43d are in GP 
 (1 + 7d)
2
 = (1 + d) (1 + 43d) 
 1 + 49d
2
 + 14d = 1 + 44 d + 43d
2
  
 6d
2
 – 30d = 0 
 d = 5 
 
? ?
? ?
20
20
S 2 1 20 1 5
2
     =10 2 95
     =970
? ? ? ? ? ??
??
?  
10. Let f : R (0, ) ? ? ? be strictly increasing 
function such that 
x
f (7x)
lim 1
f (x)
??
? . Then, the value 
of 
x
f (5x)
lim 1
f (x)
??
??
?
??
??
 is equal to  
 (1) 4 
 (2) 0 
 (3) 7/5 
 (4) 1 
Ans.  (2) 
Sol.- f : R (0, ) ?? 
 
? ?
? ?
x
f 7x
lim 1
fx
??
?  
 f is increasing  
 
? ? ? ? ? ? f x f 5x f 7x ? ? ? 
 
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
x
f x f 5x f 7x
f x f x f x
f 5x
1 lim 1
fx
f 5x
1
fx
1 1 0
??
??
??
??
??
??
??
? ? ?
 
11. The area of the region enclosed by the parabola  
y = 4x – x
2
 and 3y = (x – 4)
2
 is equal to 
 (1) 
32
9
 
 (2) 4 
 (3) 6 
 (4) 
14
3
 
Ans.  (3) 
Sol.-  
  
 Area ? ?
? ?
2
4
2
1
x4
4x x dx
3
??
?
?? ? ? ?
??
??
?
 
 Area 
? ?
4
3
23
1
x4
4x x
2 3 9
?
? ? ? 
 
64 64 4 1 27
2 3 2 3 9
??
? ? ? ? ?
??
??
 
 
? ? 27 21 6 ? ? ? 
12. Let the mean and the variance of 6 observation a, 
b, 68, 44, 48, 60 be 55 and 194, respectively if  
a > b, then a + 3b is 
 (1) 200 
 (2) 190 
 (3) 180 
 (4) 210 
Ans.  (3) 
Sol.- a, b, 68, 44, 48, 60 
 Mean = 55      a > b 
 Variance = 194 a + 3b 
 
a b 68 44 48 60
55
6
220 a b 330    
 a b 110......(1)
? ? ? ? ?
?
? ? ? ?
? ? ?
 
 
 Also, 
 
? ?
? ? ? ? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
2
i
2 2 2 2
22
22
22
22
22
22
xx
194
n
a 55 b 55 68 55 44 55
48 55 60 55 194 6
a 55 b 55 169 121 49 25 1164
a 55 b 55 1164 364 800
a 3025 110a b 3025 110b 800
a b 800 6050 12100
a b 6850.......(2)
Solve (1) & (2);
a
?
?
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?
??
?
? ?
=75,b=35
a 3b 75 3 35 75 105 180 ? ? ? ? ? ? ?
 
13. If the function f :( , 1] (a,b] ? ? ? ? defined by 
3
x 3x 1
f(x) e
??
? is one-one and onto, then the 
distance of the point P(2b + 4, a + 2) from the line 
x + e
–3
y = 4 is :  
 (1) 
6
2 1 e ? (2) 
6
4 1 e ? 
 (3) 
6
3 1 e ? (4) 
6
1e ? 
Ans.  (1) 
Sol.- ? ?
3
x 3x 1
f x e
??
? 
 ? ? ? ?
3
x 3x 1 2
f ' x e . 3x 3
??
?? 
 ? ? ? ?
3
x 3x 1
e .3 x 1 x 1
??
? ? ? 
 For ? ? f ' x 0 ? 
 ? ? fx ? is increasing function  
 ? ? a e 0 f
??
? ? ? ? ? ? 
 ? ?
1 3 1 3
b e e f 1
? ? ?
? ? ? ? 
 P(2b + 4, a + 2) 
 ? ?
3
P 2 e 4,2 ?? 
 
 
x + e y = 4
-3
P
d
 
 
? ?
33
6
6
2e 4 2e 4
d 2 1 e
1e
?
?
? ? ?
? ? ?
?
 
14. Consider the function f :(0, ) R ?? defined by 
e
log x
f (x) e
?
? . If m and n be respectively the 
number of points at which f is not continuous and f 
is not differentiable, then m + n is 
 (1) 0 
 (2) 3 
 (3) 1 
 (4) 2 
Ans.  (3) 
Sol.-  
 
? ?
? ?
e
log x
f : 0, R
f x e
?
??
?
 
 ? ?
ln x
ln x
ln x
1
;0 x 1
1
e
fx
1
e
;x 1
e
?
?
??
?
?
??
?
?
?
?
?
 
 
1
x;0 x 1
1
x
1
, x 1
x
?
? ? ?
?
?
?
?
? ?
?
 
 
1
0 1
 
 m = 0 (No point at which function is not continuous) 
 n = 1 (Not differentiable) 
 ? m + n = 1 
15. The number of solutions, of the equation 
sinx sinx
e 2e 2
?
?? is 
 (1) 2 
 (2) more than 2 
 (3) 1 
 (4) 0 
Ans.  (4) 
Read More
357 docs|148 tests

Top Courses for JEE

Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Exam

,

JEE Main 2024 January 31 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

JEE Main 2024 January 31 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Important questions

,

Free

,

study material

,

Previous Year Questions with Solutions

,

Extra Questions

,

practice quizzes

,

mock tests for examination

,

past year papers

,

Viva Questions

,

Objective type Questions

,

shortcuts and tricks

,

Summary

,

Semester Notes

,

video lectures

,

pdf

,

Sample Paper

,

ppt

,

MCQs

,

JEE Main 2024 January 31 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

;