Page 1
JEE Main Previous Year Questions
(2025): 3D Geometry
Q1: Let ?? ?? :
?? -?? ?? =
?? -?? -?? =
?? +?? ?? and ?? ?? :
?? -?? ?? =
?? ?? =
?? +?? ?? ,?? ? ?? , be two lines, which intersect
at the point ?? . If ?? is the foot of perpendicular from the point ?? (?? ,?? ,-?? ) on ?? ?? , then
the value of ???? ?? ( ???? )
?? is ____ -
JEE Main 2025 (Online) 22nd January Morning Shift
Ans: 216
Solution:
Explanation
To find the value of 26?? ( PB)
2
, we proceed as follows:
Intersection Point ?? of L
1
and L
2
We are given the equations of the lines:
L
1
:
?? - 1
3
=
?? - 1
-1
=
?? + 1
0
L
2
:
?? - 2
2
=
?? 0
=
?? + 4
??
For L
1
,?? + 1 = 0, which implies ?? = -1.
For L
2
, since ?? = 0, the direction ratios can be matched using the parameter ?? :
?? = 3?? + 1,?? = -?? + 1,?? = -1,
?? = 2?? + 2,?? = 0,?? = ???? - 4.
Setting the coordinates equal for intersection:
3?? + 1 = 2?? + 2,
-?? + 1 = 0,
-1 = ???? - 4.
From -?? + 1 = 0, we find ?? = 1.
Substituting ?? = 1 into 3?? + 1 = 2?? + 2 gives:
3(1)+ 1 = 2?? + 2 ? ?? = 1.
Also, substituting ?? = 1 into -1 = ???? - 4 gives:
-1 = ?? (1)- 4 ? ?? = 3.
So, the intersection point ?? is:
?? (4,0,-1).
Foot of Perpendicular from ?? to L
2
Page 2
JEE Main Previous Year Questions
(2025): 3D Geometry
Q1: Let ?? ?? :
?? -?? ?? =
?? -?? -?? =
?? +?? ?? and ?? ?? :
?? -?? ?? =
?? ?? =
?? +?? ?? ,?? ? ?? , be two lines, which intersect
at the point ?? . If ?? is the foot of perpendicular from the point ?? (?? ,?? ,-?? ) on ?? ?? , then
the value of ???? ?? ( ???? )
?? is ____ -
JEE Main 2025 (Online) 22nd January Morning Shift
Ans: 216
Solution:
Explanation
To find the value of 26?? ( PB)
2
, we proceed as follows:
Intersection Point ?? of L
1
and L
2
We are given the equations of the lines:
L
1
:
?? - 1
3
=
?? - 1
-1
=
?? + 1
0
L
2
:
?? - 2
2
=
?? 0
=
?? + 4
??
For L
1
,?? + 1 = 0, which implies ?? = -1.
For L
2
, since ?? = 0, the direction ratios can be matched using the parameter ?? :
?? = 3?? + 1,?? = -?? + 1,?? = -1,
?? = 2?? + 2,?? = 0,?? = ???? - 4.
Setting the coordinates equal for intersection:
3?? + 1 = 2?? + 2,
-?? + 1 = 0,
-1 = ???? - 4.
From -?? + 1 = 0, we find ?? = 1.
Substituting ?? = 1 into 3?? + 1 = 2?? + 2 gives:
3(1)+ 1 = 2?? + 2 ? ?? = 1.
Also, substituting ?? = 1 into -1 = ???? - 4 gives:
-1 = ?? (1)- 4 ? ?? = 3.
So, the intersection point ?? is:
?? (4,0,-1).
Foot of Perpendicular from ?? to L
2
The point ?? on L
2
is given by:
?? (2?? + 2,0,3?? - 4).
For vector ????
?????
= (2?? + 1,-1,3?? - 3), since ???? is perpendicular to L
2
, the dot product should
be zero:
(2?? + 1)· 2+ (-1)· 0 + (3?? - 3)· 3 = 0.
Simplifying gives:
4?? + 2+ 9?? - 9 = 0 ? 13?? = 7 ? ?? =
7
13
.
So, the coordinates of point ?? are:
?? (
40
13
,0,
-31
13
).
Distance PB and Calculation
The vector ????
?????
is:
????
?????
= (4 -
40
13
,0 - 0,-1- (
-31
13
)).
Calculating the components:
????
?????
= (
12
13
,0,
18
13
).
The square of the distance (???? )
2
is:
(
12
13
)
2
+ (0)
2
+ (
18
13
)
2
=
144
169
+
324
169
=
468
169
.
Thus, 26?? (???? )
2
is:
26× 3 ×
468
169
= 216 .
So, the final value is 216 .
Q2: Let ?? be the image of the point ?? (?? ,-?? ,?? ) in the line ?? :
?? -?? ?? =
?? +?? ?? =
?? ?? and
?? (?? ,?? ,?? ) be a point on ?? . Then the square of the area of ? ?????? is ____ .
JEE Main 2025 (Online) 24th January Evening Shift
Ans: 957
Solution:
Page 3
JEE Main Previous Year Questions
(2025): 3D Geometry
Q1: Let ?? ?? :
?? -?? ?? =
?? -?? -?? =
?? +?? ?? and ?? ?? :
?? -?? ?? =
?? ?? =
?? +?? ?? ,?? ? ?? , be two lines, which intersect
at the point ?? . If ?? is the foot of perpendicular from the point ?? (?? ,?? ,-?? ) on ?? ?? , then
the value of ???? ?? ( ???? )
?? is ____ -
JEE Main 2025 (Online) 22nd January Morning Shift
Ans: 216
Solution:
Explanation
To find the value of 26?? ( PB)
2
, we proceed as follows:
Intersection Point ?? of L
1
and L
2
We are given the equations of the lines:
L
1
:
?? - 1
3
=
?? - 1
-1
=
?? + 1
0
L
2
:
?? - 2
2
=
?? 0
=
?? + 4
??
For L
1
,?? + 1 = 0, which implies ?? = -1.
For L
2
, since ?? = 0, the direction ratios can be matched using the parameter ?? :
?? = 3?? + 1,?? = -?? + 1,?? = -1,
?? = 2?? + 2,?? = 0,?? = ???? - 4.
Setting the coordinates equal for intersection:
3?? + 1 = 2?? + 2,
-?? + 1 = 0,
-1 = ???? - 4.
From -?? + 1 = 0, we find ?? = 1.
Substituting ?? = 1 into 3?? + 1 = 2?? + 2 gives:
3(1)+ 1 = 2?? + 2 ? ?? = 1.
Also, substituting ?? = 1 into -1 = ???? - 4 gives:
-1 = ?? (1)- 4 ? ?? = 3.
So, the intersection point ?? is:
?? (4,0,-1).
Foot of Perpendicular from ?? to L
2
The point ?? on L
2
is given by:
?? (2?? + 2,0,3?? - 4).
For vector ????
?????
= (2?? + 1,-1,3?? - 3), since ???? is perpendicular to L
2
, the dot product should
be zero:
(2?? + 1)· 2+ (-1)· 0 + (3?? - 3)· 3 = 0.
Simplifying gives:
4?? + 2+ 9?? - 9 = 0 ? 13?? = 7 ? ?? =
7
13
.
So, the coordinates of point ?? are:
?? (
40
13
,0,
-31
13
).
Distance PB and Calculation
The vector ????
?????
is:
????
?????
= (4 -
40
13
,0 - 0,-1- (
-31
13
)).
Calculating the components:
????
?????
= (
12
13
,0,
18
13
).
The square of the distance (???? )
2
is:
(
12
13
)
2
+ (0)
2
+ (
18
13
)
2
=
144
169
+
324
169
=
468
169
.
Thus, 26?? (???? )
2
is:
26× 3 ×
468
169
= 216 .
So, the final value is 216 .
Q2: Let ?? be the image of the point ?? (?? ,-?? ,?? ) in the line ?? :
?? -?? ?? =
?? +?? ?? =
?? ?? and
?? (?? ,?? ,?? ) be a point on ?? . Then the square of the area of ? ?????? is ____ .
JEE Main 2025 (Online) 24th January Evening Shift
Ans: 957
Solution:
Let R(2?? + 1,3?? - 1,4?? )
2?? + 1 = 5
?? = 2
R(5,5,8)
let T(2?? + 1,3?? - 1,4?? )
QT
?????
= (2?? - 6)i ˆ + (3?? + 1)j ˆ + (4?? - 5)k
ˆ
b
?
= 2i ˆ + 3j ˆ + 4k
ˆ
QT
?????
· b
?
= 0
4?? - 12+ 9?? + 3 + 16?? - 20 = 0
?? = 1
T(3,2,4)
QT = v33 RT = v29
( area of ? PQR)
2
= (
1
2
v29· 2v33)
2
= 957
Q3: Let the area of the triangle formed by the lines
?? + ?? = ?? - ?? = ?? ,
?? -?? ?? =
?? -?? =
?? -?? ?? and
?? -?? =
?? -?? ?? =
?? -?? ?? be ?? . Then ?? ?? is equal to ____ .
JEE Main 2025 (Online) 8th April Evening Shift
Ans: 56
Solution:
?? 1
:?? + 2 = ?? - 1 = ?? = l
?? 2
:
?? - 3
5
=
?? -1
=
?? - 1
1
= ??
?? 3
:
?? -3
=
?? - 3
5
=
?? - 2
1
= ??
Page 4
JEE Main Previous Year Questions
(2025): 3D Geometry
Q1: Let ?? ?? :
?? -?? ?? =
?? -?? -?? =
?? +?? ?? and ?? ?? :
?? -?? ?? =
?? ?? =
?? +?? ?? ,?? ? ?? , be two lines, which intersect
at the point ?? . If ?? is the foot of perpendicular from the point ?? (?? ,?? ,-?? ) on ?? ?? , then
the value of ???? ?? ( ???? )
?? is ____ -
JEE Main 2025 (Online) 22nd January Morning Shift
Ans: 216
Solution:
Explanation
To find the value of 26?? ( PB)
2
, we proceed as follows:
Intersection Point ?? of L
1
and L
2
We are given the equations of the lines:
L
1
:
?? - 1
3
=
?? - 1
-1
=
?? + 1
0
L
2
:
?? - 2
2
=
?? 0
=
?? + 4
??
For L
1
,?? + 1 = 0, which implies ?? = -1.
For L
2
, since ?? = 0, the direction ratios can be matched using the parameter ?? :
?? = 3?? + 1,?? = -?? + 1,?? = -1,
?? = 2?? + 2,?? = 0,?? = ???? - 4.
Setting the coordinates equal for intersection:
3?? + 1 = 2?? + 2,
-?? + 1 = 0,
-1 = ???? - 4.
From -?? + 1 = 0, we find ?? = 1.
Substituting ?? = 1 into 3?? + 1 = 2?? + 2 gives:
3(1)+ 1 = 2?? + 2 ? ?? = 1.
Also, substituting ?? = 1 into -1 = ???? - 4 gives:
-1 = ?? (1)- 4 ? ?? = 3.
So, the intersection point ?? is:
?? (4,0,-1).
Foot of Perpendicular from ?? to L
2
The point ?? on L
2
is given by:
?? (2?? + 2,0,3?? - 4).
For vector ????
?????
= (2?? + 1,-1,3?? - 3), since ???? is perpendicular to L
2
, the dot product should
be zero:
(2?? + 1)· 2+ (-1)· 0 + (3?? - 3)· 3 = 0.
Simplifying gives:
4?? + 2+ 9?? - 9 = 0 ? 13?? = 7 ? ?? =
7
13
.
So, the coordinates of point ?? are:
?? (
40
13
,0,
-31
13
).
Distance PB and Calculation
The vector ????
?????
is:
????
?????
= (4 -
40
13
,0 - 0,-1- (
-31
13
)).
Calculating the components:
????
?????
= (
12
13
,0,
18
13
).
The square of the distance (???? )
2
is:
(
12
13
)
2
+ (0)
2
+ (
18
13
)
2
=
144
169
+
324
169
=
468
169
.
Thus, 26?? (???? )
2
is:
26× 3 ×
468
169
= 216 .
So, the final value is 216 .
Q2: Let ?? be the image of the point ?? (?? ,-?? ,?? ) in the line ?? :
?? -?? ?? =
?? +?? ?? =
?? ?? and
?? (?? ,?? ,?? ) be a point on ?? . Then the square of the area of ? ?????? is ____ .
JEE Main 2025 (Online) 24th January Evening Shift
Ans: 957
Solution:
Let R(2?? + 1,3?? - 1,4?? )
2?? + 1 = 5
?? = 2
R(5,5,8)
let T(2?? + 1,3?? - 1,4?? )
QT
?????
= (2?? - 6)i ˆ + (3?? + 1)j ˆ + (4?? - 5)k
ˆ
b
?
= 2i ˆ + 3j ˆ + 4k
ˆ
QT
?????
· b
?
= 0
4?? - 12+ 9?? + 3 + 16?? - 20 = 0
?? = 1
T(3,2,4)
QT = v33 RT = v29
( area of ? PQR)
2
= (
1
2
v29· 2v33)
2
= 957
Q3: Let the area of the triangle formed by the lines
?? + ?? = ?? - ?? = ?? ,
?? -?? ?? =
?? -?? =
?? -?? ?? and
?? -?? =
?? -?? ?? =
?? -?? ?? be ?? . Then ?? ?? is equal to ____ .
JEE Main 2025 (Online) 8th April Evening Shift
Ans: 56
Solution:
?? 1
:?? + 2 = ?? - 1 = ?? = l
?? 2
:
?? - 3
5
=
?? -1
=
?? - 1
1
= ??
?? 3
:
?? -3
=
?? - 3
5
=
?? - 2
1
= ??
Point of intersection of ?? 1
and ?? 2
l - 2 = 5 m + 3
l + 1 = -m
l = m + 1
}l = 0, m = -1 A(-2,1,0)
Point of intersection of ?? 2
and ?? 3
5?? + 3 = -3?? -?? = 3?? + 3
?? + 1 = ?? + 2
}?? = 0,?? = -1,?? (3,0,1)
Point of intersection ?? 3
and ?? 4
-3n = l - 2
3n + 3 = l + 1
n +2 = l
}l = 2,n = 0,C(0,3,2)
Ar(? ABC) = |
1
2
|
i ˆ j ˆ k
ˆ
-5 1 -1
-3 3 1
|
A =
1
2
|i ˆ(4)- j ˆ(-8)+ k
ˆ
(-12)|
A =
1
2
v16+ 64+ 144= v56
A
2
= 56
Q4: Let ?? ?? :
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and ?? ?? :
?? -?? ?? =
?? -?? ?? =
?? -?? ?? be two lines.
Then which of the following points lies on the line of the shortest distance between ?? ??
and ?? ?? ?
JEE Main 2025 (Online) 22nd January Morning Shift
Options:
A. (
14
3
,-3,
22
3
)
B. (2,3,
1
3
)
C. (
8
3
,-1,
1
3
)
D. (-
5
3
,-7,1)
Solution:
?? 1
:
?? - 1
2
=
?? - 2
3
=
?? - 3
4
?? 2
:
?? - 2
3
=
?? - 4
4
=
?? - 5
5
Page 5
JEE Main Previous Year Questions
(2025): 3D Geometry
Q1: Let ?? ?? :
?? -?? ?? =
?? -?? -?? =
?? +?? ?? and ?? ?? :
?? -?? ?? =
?? ?? =
?? +?? ?? ,?? ? ?? , be two lines, which intersect
at the point ?? . If ?? is the foot of perpendicular from the point ?? (?? ,?? ,-?? ) on ?? ?? , then
the value of ???? ?? ( ???? )
?? is ____ -
JEE Main 2025 (Online) 22nd January Morning Shift
Ans: 216
Solution:
Explanation
To find the value of 26?? ( PB)
2
, we proceed as follows:
Intersection Point ?? of L
1
and L
2
We are given the equations of the lines:
L
1
:
?? - 1
3
=
?? - 1
-1
=
?? + 1
0
L
2
:
?? - 2
2
=
?? 0
=
?? + 4
??
For L
1
,?? + 1 = 0, which implies ?? = -1.
For L
2
, since ?? = 0, the direction ratios can be matched using the parameter ?? :
?? = 3?? + 1,?? = -?? + 1,?? = -1,
?? = 2?? + 2,?? = 0,?? = ???? - 4.
Setting the coordinates equal for intersection:
3?? + 1 = 2?? + 2,
-?? + 1 = 0,
-1 = ???? - 4.
From -?? + 1 = 0, we find ?? = 1.
Substituting ?? = 1 into 3?? + 1 = 2?? + 2 gives:
3(1)+ 1 = 2?? + 2 ? ?? = 1.
Also, substituting ?? = 1 into -1 = ???? - 4 gives:
-1 = ?? (1)- 4 ? ?? = 3.
So, the intersection point ?? is:
?? (4,0,-1).
Foot of Perpendicular from ?? to L
2
The point ?? on L
2
is given by:
?? (2?? + 2,0,3?? - 4).
For vector ????
?????
= (2?? + 1,-1,3?? - 3), since ???? is perpendicular to L
2
, the dot product should
be zero:
(2?? + 1)· 2+ (-1)· 0 + (3?? - 3)· 3 = 0.
Simplifying gives:
4?? + 2+ 9?? - 9 = 0 ? 13?? = 7 ? ?? =
7
13
.
So, the coordinates of point ?? are:
?? (
40
13
,0,
-31
13
).
Distance PB and Calculation
The vector ????
?????
is:
????
?????
= (4 -
40
13
,0 - 0,-1- (
-31
13
)).
Calculating the components:
????
?????
= (
12
13
,0,
18
13
).
The square of the distance (???? )
2
is:
(
12
13
)
2
+ (0)
2
+ (
18
13
)
2
=
144
169
+
324
169
=
468
169
.
Thus, 26?? (???? )
2
is:
26× 3 ×
468
169
= 216 .
So, the final value is 216 .
Q2: Let ?? be the image of the point ?? (?? ,-?? ,?? ) in the line ?? :
?? -?? ?? =
?? +?? ?? =
?? ?? and
?? (?? ,?? ,?? ) be a point on ?? . Then the square of the area of ? ?????? is ____ .
JEE Main 2025 (Online) 24th January Evening Shift
Ans: 957
Solution:
Let R(2?? + 1,3?? - 1,4?? )
2?? + 1 = 5
?? = 2
R(5,5,8)
let T(2?? + 1,3?? - 1,4?? )
QT
?????
= (2?? - 6)i ˆ + (3?? + 1)j ˆ + (4?? - 5)k
ˆ
b
?
= 2i ˆ + 3j ˆ + 4k
ˆ
QT
?????
· b
?
= 0
4?? - 12+ 9?? + 3 + 16?? - 20 = 0
?? = 1
T(3,2,4)
QT = v33 RT = v29
( area of ? PQR)
2
= (
1
2
v29· 2v33)
2
= 957
Q3: Let the area of the triangle formed by the lines
?? + ?? = ?? - ?? = ?? ,
?? -?? ?? =
?? -?? =
?? -?? ?? and
?? -?? =
?? -?? ?? =
?? -?? ?? be ?? . Then ?? ?? is equal to ____ .
JEE Main 2025 (Online) 8th April Evening Shift
Ans: 56
Solution:
?? 1
:?? + 2 = ?? - 1 = ?? = l
?? 2
:
?? - 3
5
=
?? -1
=
?? - 1
1
= ??
?? 3
:
?? -3
=
?? - 3
5
=
?? - 2
1
= ??
Point of intersection of ?? 1
and ?? 2
l - 2 = 5 m + 3
l + 1 = -m
l = m + 1
}l = 0, m = -1 A(-2,1,0)
Point of intersection of ?? 2
and ?? 3
5?? + 3 = -3?? -?? = 3?? + 3
?? + 1 = ?? + 2
}?? = 0,?? = -1,?? (3,0,1)
Point of intersection ?? 3
and ?? 4
-3n = l - 2
3n + 3 = l + 1
n +2 = l
}l = 2,n = 0,C(0,3,2)
Ar(? ABC) = |
1
2
|
i ˆ j ˆ k
ˆ
-5 1 -1
-3 3 1
|
A =
1
2
|i ˆ(4)- j ˆ(-8)+ k
ˆ
(-12)|
A =
1
2
v16+ 64+ 144= v56
A
2
= 56
Q4: Let ?? ?? :
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and ?? ?? :
?? -?? ?? =
?? -?? ?? =
?? -?? ?? be two lines.
Then which of the following points lies on the line of the shortest distance between ?? ??
and ?? ?? ?
JEE Main 2025 (Online) 22nd January Morning Shift
Options:
A. (
14
3
,-3,
22
3
)
B. (2,3,
1
3
)
C. (
8
3
,-1,
1
3
)
D. (-
5
3
,-7,1)
Solution:
?? 1
:
?? - 1
2
=
?? - 2
3
=
?? - 3
4
?? 2
:
?? - 2
3
=
?? - 4
4
=
?? - 5
5
?? (2?? + 1,3?? + 2,4?? + 3)
?? (3?? + 2,4?? + 4,5?? + 5)
Dr's of ???? < 2?? - 3?? - 1,3?? - 4?? - 2,
4?? - 5?? - 2 >
???? = |
??ˆ ??ˆ ?? ˆ
2 3 4
3 4 5
| = -??ˆ + 2??ˆ - ?? ˆ
?
2?? - 3?? - 1
-1
=
3?? - 4?? - 2
2
=
4?? - 5?? - 2
-1
? ?? =
1
3
?? =
-1
6
? ?? (
5
3
,3,
13
3
) ?? (
3
2
,
10
3
,
25
6
)
Dr's ???? ?1,-2,1?
? Line
?? -
5
3
1
=
?? - 3
-2
=
?? -
13
3
1
Q5: The perpendicular distance, of the line
?? -?? ?? =
?? +?? -?? =
?? +?? ?? from the point
?? (?? ,-???? ,?? ), is :
JEE Main 2025 (Online) 22nd January Evening Shift
Options:
A. 6
B. 4v3
C. 3v5
D. 5v2
Ans: C
Read More