Page 1
JEE Main Previous Year Questions
(2025): Ellipse
Q1: If ?? and ?? '
are the foci of the ellipse
?? ?? ????
+
?? ?? ?? = ?? and P be a point on the ellipse,
then ?????? ( ???? . ?? '
?? )+ ?????? ( ???? . ?? '
?? ) is equal to :
A. 3( 1 + v 2)
B. 3( 6 + v 2)
C. 9
D. 27
Ans: D
Solution:
PS + PS
'
= 2 × 3v 2
b
2
= a
2
( 1 - e
2
) ? 9 = 18( 1 - e
2
)
? e =
1
v 2
Directrix x =
a
e
=
3v 2
1
v 2
= 6
???? · ?? ?? '
= |
1
v 2
( 3v 2cos ?? - 6)
1
v 2
( 3v 2cos ?? + 6) |
=
1
2
|18cos
2
?? - 36|
( PS · PS
'
)
max
= 18; ( PS · PS)
min
= 9
sum = 27
Page 2
JEE Main Previous Year Questions
(2025): Ellipse
Q1: If ?? and ?? '
are the foci of the ellipse
?? ?? ????
+
?? ?? ?? = ?? and P be a point on the ellipse,
then ?????? ( ???? . ?? '
?? )+ ?????? ( ???? . ?? '
?? ) is equal to :
A. 3( 1 + v 2)
B. 3( 6 + v 2)
C. 9
D. 27
Ans: D
Solution:
PS + PS
'
= 2 × 3v 2
b
2
= a
2
( 1 - e
2
) ? 9 = 18( 1 - e
2
)
? e =
1
v 2
Directrix x =
a
e
=
3v 2
1
v 2
= 6
???? · ?? ?? '
= |
1
v 2
( 3v 2cos ?? - 6)
1
v 2
( 3v 2cos ?? + 6) |
=
1
2
|18cos
2
?? - 36|
( PS · PS
'
)
max
= 18; ( PS · PS)
min
= 9
sum = 27
Q2: If the length of the minor axis of an ellipse is equal to one fourth of the distance
between the foci, then the eccentricity of the ellipse is :
A.
4
v 17
B.
v 3
16
C.
3
v 19
D.
v 5
7
Ans: A
Solution:
2?? =
1
4
( 2???? )
?? ?? =
?? 4
?? =
v
1 -
?? 2
?? 2
?? =
v
1 -
?? 2
16
?? 2
(1 +
1
16
) = 1
?? =
4
v 17
Q3: A line passing through the point ?? ( v?? , v?? ) intersects the ellipse
?? ?? ????
+
?? ?? ????
= ?? at ??
and ?? such that ( ???? )· ( ???? ) is maximum. Then ?? ( ?? ?? ?? + ?? ?? ?? ) is equal to :
A. 218
B. 377
C. 290
D. 338
Ans: D
Solution: Given ellipse is x
2
/ 36 + y
2
/ 25 = 1
Page 3
JEE Main Previous Year Questions
(2025): Ellipse
Q1: If ?? and ?? '
are the foci of the ellipse
?? ?? ????
+
?? ?? ?? = ?? and P be a point on the ellipse,
then ?????? ( ???? . ?? '
?? )+ ?????? ( ???? . ?? '
?? ) is equal to :
A. 3( 1 + v 2)
B. 3( 6 + v 2)
C. 9
D. 27
Ans: D
Solution:
PS + PS
'
= 2 × 3v 2
b
2
= a
2
( 1 - e
2
) ? 9 = 18( 1 - e
2
)
? e =
1
v 2
Directrix x =
a
e
=
3v 2
1
v 2
= 6
???? · ?? ?? '
= |
1
v 2
( 3v 2cos ?? - 6)
1
v 2
( 3v 2cos ?? + 6) |
=
1
2
|18cos
2
?? - 36|
( PS · PS
'
)
max
= 18; ( PS · PS)
min
= 9
sum = 27
Q2: If the length of the minor axis of an ellipse is equal to one fourth of the distance
between the foci, then the eccentricity of the ellipse is :
A.
4
v 17
B.
v 3
16
C.
3
v 19
D.
v 5
7
Ans: A
Solution:
2?? =
1
4
( 2???? )
?? ?? =
?? 4
?? =
v
1 -
?? 2
?? 2
?? =
v
1 -
?? 2
16
?? 2
(1 +
1
16
) = 1
?? =
4
v 17
Q3: A line passing through the point ?? ( v?? , v?? ) intersects the ellipse
?? ?? ????
+
?? ?? ????
= ?? at ??
and ?? such that ( ???? )· ( ???? ) is maximum. Then ?? ( ?? ?? ?? + ?? ?? ?? ) is equal to :
A. 218
B. 377
C. 290
D. 338
Ans: D
Solution: Given ellipse is x
2
/ 36 + y
2
/ 25 = 1
Any point on line ???? can be assumed as
Q( v 5 + rcos ?? , v 5 + rsin ?? )
Putting this in equation of ellipse, we get
25( v 5 + ?? cos ?? )
2
+ 36( v 5 + ?? sin ?? )
2
= 900
Simplifying, we get
r
2
( 25cos
2
?? + 36sin
2
?? )+ 2v 5r( 25cos ?? + 36sin ?? )- 595 = 0
|r| = PA, PB
PA · PB =
595
25cos
2
?? + 36sin
2
?? =
595
25 + 11sin
2
?? = maximum, if sin
2
?? = 0
This means line ???? must be parallel to ?? -axis
? ?? ?? = ?? ?? = v 5
Putting ?? = v 5 in equation of ellipse, we get
?? 2
36
+
1
5
= 1 ? ?? 2
= 36 ·
4
5
Hence,
PA
2
+ PB
2
= (v 5 -
12
v 5
)
2
+ (v 5 +
12
v 5
)
2
= 2 (5 +
144
5
) =
338
5
5( PA
2
+ PB
2
) = 338
Q4: The length of the latus-rectum of the ellipse, whose foci are ( ?? , ?? ) and ( ?? , -?? )
and eccentricity is
?? ?? , is
Page 4
JEE Main Previous Year Questions
(2025): Ellipse
Q1: If ?? and ?? '
are the foci of the ellipse
?? ?? ????
+
?? ?? ?? = ?? and P be a point on the ellipse,
then ?????? ( ???? . ?? '
?? )+ ?????? ( ???? . ?? '
?? ) is equal to :
A. 3( 1 + v 2)
B. 3( 6 + v 2)
C. 9
D. 27
Ans: D
Solution:
PS + PS
'
= 2 × 3v 2
b
2
= a
2
( 1 - e
2
) ? 9 = 18( 1 - e
2
)
? e =
1
v 2
Directrix x =
a
e
=
3v 2
1
v 2
= 6
???? · ?? ?? '
= |
1
v 2
( 3v 2cos ?? - 6)
1
v 2
( 3v 2cos ?? + 6) |
=
1
2
|18cos
2
?? - 36|
( PS · PS
'
)
max
= 18; ( PS · PS)
min
= 9
sum = 27
Q2: If the length of the minor axis of an ellipse is equal to one fourth of the distance
between the foci, then the eccentricity of the ellipse is :
A.
4
v 17
B.
v 3
16
C.
3
v 19
D.
v 5
7
Ans: A
Solution:
2?? =
1
4
( 2???? )
?? ?? =
?? 4
?? =
v
1 -
?? 2
?? 2
?? =
v
1 -
?? 2
16
?? 2
(1 +
1
16
) = 1
?? =
4
v 17
Q3: A line passing through the point ?? ( v?? , v?? ) intersects the ellipse
?? ?? ????
+
?? ?? ????
= ?? at ??
and ?? such that ( ???? )· ( ???? ) is maximum. Then ?? ( ?? ?? ?? + ?? ?? ?? ) is equal to :
A. 218
B. 377
C. 290
D. 338
Ans: D
Solution: Given ellipse is x
2
/ 36 + y
2
/ 25 = 1
Any point on line ???? can be assumed as
Q( v 5 + rcos ?? , v 5 + rsin ?? )
Putting this in equation of ellipse, we get
25( v 5 + ?? cos ?? )
2
+ 36( v 5 + ?? sin ?? )
2
= 900
Simplifying, we get
r
2
( 25cos
2
?? + 36sin
2
?? )+ 2v 5r( 25cos ?? + 36sin ?? )- 595 = 0
|r| = PA, PB
PA · PB =
595
25cos
2
?? + 36sin
2
?? =
595
25 + 11sin
2
?? = maximum, if sin
2
?? = 0
This means line ???? must be parallel to ?? -axis
? ?? ?? = ?? ?? = v 5
Putting ?? = v 5 in equation of ellipse, we get
?? 2
36
+
1
5
= 1 ? ?? 2
= 36 ·
4
5
Hence,
PA
2
+ PB
2
= (v 5 -
12
v 5
)
2
+ (v 5 +
12
v 5
)
2
= 2 (5 +
144
5
) =
338
5
5( PA
2
+ PB
2
) = 338
Q4: The length of the latus-rectum of the ellipse, whose foci are ( ?? , ?? ) and ( ?? , -?? )
and eccentricity is
?? ?? , is
A.
6
5
B.
50
3
C.
10
3
D.
18
5
Ans: D
Solution:
2be = 8
be = 4
?? (
4
5
) = 4 ? ?? = 5
? ?? 2
= ?? 2
- ?? 2
16 = 25 - ?? 2
? ?? = 3
L.R. =
2?? 2
?? =
18
5
Q5: The centre of a circle C is at the centre of the ellipse ?? :
?? ?? ?? ?? +
?? ?? ?? ?? = ?? , ?? > ?? . Let ??
pass through the foci ?? ?? and ?? ?? of ?? such that the circle ?? and the ellipse ?? intersect
at four points. Let P be one of these four points. If the area of the triangle ????
?? ?? ?? is 30
and the length of the major axis of E is 17 , then the distance between the foci of E is :
A. 26
B. 13
C. 12
D.
13
2
Ans: B
Solution:
Page 5
JEE Main Previous Year Questions
(2025): Ellipse
Q1: If ?? and ?? '
are the foci of the ellipse
?? ?? ????
+
?? ?? ?? = ?? and P be a point on the ellipse,
then ?????? ( ???? . ?? '
?? )+ ?????? ( ???? . ?? '
?? ) is equal to :
A. 3( 1 + v 2)
B. 3( 6 + v 2)
C. 9
D. 27
Ans: D
Solution:
PS + PS
'
= 2 × 3v 2
b
2
= a
2
( 1 - e
2
) ? 9 = 18( 1 - e
2
)
? e =
1
v 2
Directrix x =
a
e
=
3v 2
1
v 2
= 6
???? · ?? ?? '
= |
1
v 2
( 3v 2cos ?? - 6)
1
v 2
( 3v 2cos ?? + 6) |
=
1
2
|18cos
2
?? - 36|
( PS · PS
'
)
max
= 18; ( PS · PS)
min
= 9
sum = 27
Q2: If the length of the minor axis of an ellipse is equal to one fourth of the distance
between the foci, then the eccentricity of the ellipse is :
A.
4
v 17
B.
v 3
16
C.
3
v 19
D.
v 5
7
Ans: A
Solution:
2?? =
1
4
( 2???? )
?? ?? =
?? 4
?? =
v
1 -
?? 2
?? 2
?? =
v
1 -
?? 2
16
?? 2
(1 +
1
16
) = 1
?? =
4
v 17
Q3: A line passing through the point ?? ( v?? , v?? ) intersects the ellipse
?? ?? ????
+
?? ?? ????
= ?? at ??
and ?? such that ( ???? )· ( ???? ) is maximum. Then ?? ( ?? ?? ?? + ?? ?? ?? ) is equal to :
A. 218
B. 377
C. 290
D. 338
Ans: D
Solution: Given ellipse is x
2
/ 36 + y
2
/ 25 = 1
Any point on line ???? can be assumed as
Q( v 5 + rcos ?? , v 5 + rsin ?? )
Putting this in equation of ellipse, we get
25( v 5 + ?? cos ?? )
2
+ 36( v 5 + ?? sin ?? )
2
= 900
Simplifying, we get
r
2
( 25cos
2
?? + 36sin
2
?? )+ 2v 5r( 25cos ?? + 36sin ?? )- 595 = 0
|r| = PA, PB
PA · PB =
595
25cos
2
?? + 36sin
2
?? =
595
25 + 11sin
2
?? = maximum, if sin
2
?? = 0
This means line ???? must be parallel to ?? -axis
? ?? ?? = ?? ?? = v 5
Putting ?? = v 5 in equation of ellipse, we get
?? 2
36
+
1
5
= 1 ? ?? 2
= 36 ·
4
5
Hence,
PA
2
+ PB
2
= (v 5 -
12
v 5
)
2
+ (v 5 +
12
v 5
)
2
= 2 (5 +
144
5
) =
338
5
5( PA
2
+ PB
2
) = 338
Q4: The length of the latus-rectum of the ellipse, whose foci are ( ?? , ?? ) and ( ?? , -?? )
and eccentricity is
?? ?? , is
A.
6
5
B.
50
3
C.
10
3
D.
18
5
Ans: D
Solution:
2be = 8
be = 4
?? (
4
5
) = 4 ? ?? = 5
? ?? 2
= ?? 2
- ?? 2
16 = 25 - ?? 2
? ?? = 3
L.R. =
2?? 2
?? =
18
5
Q5: The centre of a circle C is at the centre of the ellipse ?? :
?? ?? ?? ?? +
?? ?? ?? ?? = ?? , ?? > ?? . Let ??
pass through the foci ?? ?? and ?? ?? of ?? such that the circle ?? and the ellipse ?? intersect
at four points. Let P be one of these four points. If the area of the triangle ????
?? ?? ?? is 30
and the length of the major axis of E is 17 , then the distance between the foci of E is :
A. 26
B. 13
C. 12
D.
13
2
Ans: B
Solution:
1
2
PF
1
· PF
2
= 30
PF
1
+ PF
2
= 17
PF
1
= 12PF
2
= 5
F
1
F
2
= 13
option ( 2)
Q6: Let ?? = {( ?? , ?? ) ? ?? × ?? : |?? - ?? | = ?? and |?? - ?? | = ?? } and ?? = {( ?? , ?? ) ? ?? ×
?? : ???? ( ?? - ?? )
?? + ?? ( ?? - ?? )
?? = ?????? }
A. B ? A
B. A ? B = {( x, y) : -4 = x = 4, -1 = y = 11}
C. neither A ? B nor B ? A
D. ?? ? ??
Ans: A
Solution:
A: |?? - 1| = 4 and |?? - 5| = 6
? -4 = ?? - 1 = 4 ? -6 = ?? - 5 = 6
? -3 = ?? = 5 ? -1 = ?? = 11
B: 16( ?? - 2)
2
+ 9( ?? - 6)
2
= 144
B :
( ?? - 2)
2
9
+
( ?? - 6)
2
16
= 1
Read More