B Com Exam  >  B Com Notes  >  Business Mathematics and Statistics  >  Linear Programming - Elements of Operation research, Business Mathematics and Statistics

Linear Programming - Elements of Operation research, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com PDF Download

Operations Research (OR) means a scientific approach to decision making, which seeks to determine how to optimally design and operate a system, usually under conditions requiring the allocation of scarce resources.

An OR study has the following major phases:

I. Define the problem and gather relevant data. ⇒

II. Formulate a mathematical model to represent the problem ⇒

III. Develop a procedure for deriving a solution to the problem ⇒

IV. Test the model and refine it as needed ⇒

V. Implement

Some of these phases will be illustrated the following example.

 

Prototype Example :

I. The GW firm manufactures two types of products W1 and W2 using two types of raw materials S1 and S2. The GW firm wishes to determine how many products of each type to produce, so as to achieve the highest possible profit.

II. The following data are available:

– 1 unit of W1 requires 2 kg of Sand 1 kg of S2.

– 1 unit of W2 requires 1 kg of S1 and 1 kg of S2.

– At present, GW has 100 kg of S1 and 80 kg of S2 in stock.

– Each unit of W1 gives a profit of $3 and each unit of W2 gives a profit of $2.

– Demand for Wequals 40 units and demand for Wis unlimited.

III. We define the decision variables: x1 - amount of product Wproduced, x2 amount of product W2 produced, Z - total profit from producing W1 and W2.

The mathematical model is as follows:

max Z = 3x1 + 2x2           [Maximize profit]

2x1 + x2 ≤ 100               [Constraint on raw material S1]

x1 + x2 ≤ 80                   [Constraint on raw material S2]

x1 ≤ 40                           [Demand for W1]

x1 ≥ 0                             [Sign restriction]

x2 ≥ 0                             [Sign restriction]

The problem is to choose values of x1 and x2, so as to maximize Z = 3x1 + 2xsubject to the restrictions. We want to derive a production plan that maximizes GW’s profit without violating the constraints on limited resources.

IV. We use an algorithm (the next part of the course will focus on the simplex method for solving linear programming problems). We obtain: x1 = 20, x2 = 60, Z = 180, so GW should produce 20 units of Wand 60 units of W2 with a resulting total profit of $180.

 

THE LINEAR PROGRAMMING MODEL

The mathematical model for a general mathematical programming problem is as follows:

max(min)z = f(x1,...,xn)             [Objective function]

g1(x1,...,xn) ≤ (≥, =)b1                   [Constraint 1]

...

gm(x1,...,xn) ≤ (≥, =)bm            [Constraint m]

x1,...,xn are called decision variables (They should completely describe the decision to be made). A solution for which all the constraints are satisfied is called a feasible solution. A feasible solution with the largest (smallest) value of the objective function is called an optimal solution.

The function h(x1,...,xn) = a1x1+a2x2+ˇˇˇ+anxn of x1,x2,...,xn is a linear function.

A model in which all the functions f,g1,...,gm are linear is called a linear model or a linear programming problem. A linear programming model(LPM) is defined as follows:

max(min)z = c1x1 + c2x2 + ˇˇˇ + cnxn [Objective function]

a11x+ a12x2 + ˇˇˇ + a1nxn ≤ (≥, =)b1 [Constraint 1]

...

am1x1 + am2x2 + ˇˇˇ + amnxn ≤ (≥, =)bm [Constraint m]

x1 ≥ 0,...,xr ≥ 0, r ≤ n [Nonnegativity constraints]

The sign constraints xi ≥ 0 are special linear constraints (nonnegativity constraints).

 

EXAMPLES OF LINEAR PROGRAMMING

PROBLEMS

1. The Diet Problem. Person X requires that all the food she/he eats come from one of the four ”basic food groups”: butter, bread, orange juice and ham. She/he wants to prepare breakfast only from these foods. Each scoop of butter costs$5, each slice (piece) of bread costs$2, each bottle of orange juice

 

 EXAMPLES OF LINEAR PROGRAMMING PROBLEMS

costs $3, and each piece (slice) of ham costs $8. Each day X must ingest at least 500 calories, 6 oz of sugar, 10 oz of carbohydrates, and 8 oz of fat. The nutritional content per unit of each food is shown in the following table:

Linear Programming - Elements of Operation research, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Formulate a linear programming model that satisfies the daily nutritional requirements of person X at minimum cost.

 

Decision variables:

x1 - amount(number of scoops) of butter,

x2 - amount(number of pieces) of bread,

x3 - number of bottles of orange juice,

x4 - amount (number of slices) of ham.

 

Linear Programming Model:

min Z = 5x1 + 2x2 + 3x3 + 8x4                      [Minimize total cost]

400x1 + 200x+ 150x3 + 500x4 ≥ 500      [Calorie constraint]

3x1 + 2x2 ≥ 6                                             [Sugar constraint]

2x1 + 2x2 + 4x3 + 4x4 ≥ 10                        [Carbohydrates constraint]

2x1 + 4x2 + x3 + 5x≥ 8                             [Fat constraint]

xi ≥ 0, i = 1,..., 4                                         [Sign constraint]

The optimal solution to this problem (solved by computer) is x1 = 0, x2 = 3, x3 = 1, x4 = 0, Z = 9. Thus, the minimum-cost diet incurs a cost of $9 and consists of 3 pieces of bread and one bottle of orange juice.

2. Production Process Model ( W.L. Winston Operations Research: Applications and Algorithms, Example 3.11, pp.87-90) Rylon Corporation manufactures four types of perfumes: Brute, Chanelle, Super Brute and Super Chanelle.

The production process is given in the Figure below.

Linear Programming - Elements of Operation research, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

  • Processing 1 lb of raw material requires 1 hour of working time and gives 3 oz of Brute and 4 oz of Chanelle.

  • 1 oz of Brute requires an additional 3 hours of processing to yield 1 oz of Super Brute.

  • 1 oz of Chanelle requires an additional 2 hours of processing to yield 1 oz of Super Chanelle

  •  Rylon has 6000 hours of time available and can purchase up to 4000 lb of raw material.

R.C must determine how much material to purchase and how much of each type of perfume should be produced and wants to maximize profit(=revenues from perfume sales - processing costs).

 

Decision variables:

  • x1 - number of ounces of Brute sold,

  • x2 - number of ounces of Super Brute sold,

  • x3 - number of ounces of Chanelle sold,

  • x4 - number of ounces of Super Chanelle sold,

  • x5 - number of pounds(lb) of raw material purchased.


Linear Programming Model:

max z = 7x1 + 14x2 + 6x3 + 10x4 − 3x5         [Maximize profit]

x1 + x2 − 3x5 = 0                                             [Manufacturing Brute and Super Brute]

x3 + x4 − 4x= 0                                             [Manufacturing Chanelle and Super Chanelle]

x5 ≤ 4000                                                         [Limit on raw materials]

3x2 + 2x4 + x5 ≤ 6000                                      [Limit on working time]

xi ≥ 0, i = 1,..., 5                                                [Sign restrictions]

After solving the model by computer we obtain the following optimal solution:

Z=172 666.667$ (profit), x1 = 11333.333 oz of Brute, x2 = 666.667 oz of Super Brute, x3 = 16000 oz of Chanelle, x4 = 0 oz of Super Chanelle and x5 = 4000lb of raw material.

3. An Inventory Model - Multiperiod Decision problems. A factory must produce a certain product over the next four quarters. The demand for each quarter is known. The factory wants to minimize total costs and has to meet all demands on time. The appropriate data are given in the following table

Linear Programming - Elements of Operation research, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com


Decision variables:

  • x- number of units produced during quarter i, i = 1,... 4.

  • m- number of units of the product in store (on the inventory) at the end of quarter i, i = 1,... 4

Linear Programming - Elements of Operation research, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Linear Programming Model:

min z = 55x+ 50x2 + 50x3 + 55x4 + 2m1 + 2m2 + 3m3      [Minimum total cost]

x− m1 = 30                                                                        [Balance for I]

m1 + x2 − m= 60                                                                [Balance for II]

m2 + x3 − m3 = 70                                                              [Balance for III ]

m3 + x= 25                                                                        [Balance for IV]

xi ≤ 60, i = 1,... 4                                                                  [Production capacity]

x≥ 0, m≥ 0, i = 1,..., 4                                                       [Sign restrictions]

The optimal solution to this problem is Z = 9615: x1 = 40, x2 = 60, x3 = 60, x4 = 25, m1 = 10, m2 = 10, m3 = 0.

4. Multiperiod Financial Model. (W.L. Winston Operations Research: Appli cations and Algorithms, Example 3.13, pp.95-97) Finco Invest. Corp. must determine an investment strategy for the next three years. At present (time 0), $100000 is available for investment. Investments A,B,C,D and E are available. The cash flow associated with investing $1 in each investment is given in the table below

Linear Programming - Elements of Operation research, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

For example, $1 invested in B requires $1 in cash at time 1 and returns $0.5 at time 2 and $1 at time 3. To ensure that the company’s portfolio is diversified, Finco requires that at most $75000 be placed in any single investment. In addition, Finco can earn interest at 8% per year by keeping uninvested cash in a bank. Returns from investments may be immediately reinvested. Formulate a linear programming problem whose solution will maximize the amount of cash in hand at time 3. Finco must decide how much money should be placed in each investment(including the bank).

 

Decision variables:

  • xA,xB,xC ,xD,xE - dollars invested in investment A,B,C,D, and E respectively,

  • y0,y1,y2 - dollars invested in the bank at time t (t=0,1,2).


The linear programming model:

max z = xB + 1.9xD + 1.5xE + 1.08y2           [Maximize the amount of cash in hand at time 3]

xA + xC + xD + y0 = 100000                          [Balance at time 0]

0.5x+ 1.2xC + 1.08y0 − xB − y1 = 0           [Balance at time 1]

xA + 0.5xB + 1.08y1 − xE − y2 = 0                 [Balance at time 2]

xA,xB,xC ,xD,xE ≤ 75000                               [Limit on dollars invested in investments]

xA,...,xE,y0,y1,y2 ≥ 0                                     [Nonnegativity constraints]

The optimal solution is Z = 218500, xA = 60000, xB = 30000, xD = 40000 , xE = 75000, xC = y0 = y1 = y2 = 0. Finco should not invest in C nor in the bank.

The document Linear Programming - Elements of Operation research, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com is a part of the B Com Course Business Mathematics and Statistics.
All you need of B Com at this link: B Com
115 videos|142 docs

FAQs on Linear Programming - Elements of Operation research, Business Mathematics and Statistics - Business Mathematics and Statistics - B Com

1. What is linear programming and how is it used in operation research?
Ans. Linear programming is a mathematical technique used to optimize the allocation of limited resources to achieve the best possible outcome. It is commonly used in operation research to solve problems that involve maximizing or minimizing a linear objective function while considering a set of linear constraints.
2. How does linear programming contribute to decision-making in business mathematics?
Ans. Linear programming plays a crucial role in decision-making in business mathematics by providing a systematic approach to optimize resource allocation. It helps businesses determine the optimal production quantities, resource utilization, and pricing strategies to maximize profit or minimize costs, taking into account various constraints such as production capacity, resource availability, and market demand.
3. What are the key components of a linear programming problem?
Ans. A linear programming problem consists of the following key components: 1. Objective Function: A linear equation that represents the goal to be maximized or minimized. 2. Decision Variables: Variables that represent the quantities to be determined. 3. Constraints: Linear equations or inequalities that impose limitations or restrictions on the decision variables. 4. Non-negativity Restrictions: The decision variables must be non-negative.
4. How can linear programming be applied to optimize production planning in a manufacturing company?
Ans. Linear programming can be applied to optimize production planning in a manufacturing company by considering factors such as production capacity, resource availability, demand forecast, and cost considerations. By formulating the objective function and constraints, the company can determine the optimal production quantities for each product, ensuring efficient utilization of resources while meeting the market demand and maximizing profit.
5. Can linear programming be used for multi-objective optimization problems?
Ans. Yes, linear programming can be used for multi-objective optimization problems by converting them into a single-objective problem using techniques such as weighted-sum method or goal programming. In such cases, multiple objective functions are assigned different weights or priority levels, and the overall objective is to find the best compromise solution that satisfies all the objectives to the greatest extent possible.
115 videos|142 docs
Download as PDF
Explore Courses for B Com exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

MCQs

,

Important questions

,

mock tests for examination

,

video lectures

,

practice quizzes

,

shortcuts and tricks

,

Semester Notes

,

study material

,

Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

,

Objective type Questions

,

pdf

,

Extra Questions

,

ppt

,

Viva Questions

,

Linear Programming - Elements of Operation research

,

Sample Paper

,

Linear Programming - Elements of Operation research

,

Summary

,

Previous Year Questions with Solutions

,

Exam

,

Linear Programming - Elements of Operation research

,

Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

,

past year papers

,

Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

,

Free

;