JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Logarithm: JEE Mains Previous Year Questions (2021-2024)

Logarithm: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Mains Previous Year Questions 
(2021-2024): Logarithm 
2023 
Q1: Let ?? , ?? , ?? be three distinct positive real numbers such that ( ?? ?? )
?? ?? ?? ?? ? ?? = ( ???? )
?? ?? ?? ?? ? ?? and ?? ?? ?? ?? ?? ? ?? =
?? ?? ?? ?? ?? ? ?? . 
Then, ?? ?? + ?? ???? is equal to    [JEE Main 2023 (Online) 10th April Morning Shift] 
Ans: 8  
Given, ( 2 ?? )
ln ? ?? = ( ???? )
ln ? ?? , where 2 ?? > 0 , ???? > 0 
? ln ? ?? ( ln ? 2 + ln ? ?? ) = ln ? ?? ( ln ? ?? + ln ? ?? ) . 
and ( ?? )
ln ? 2
= ( ?? )
ln ? ?? 
? ln ? 2 · ln ? ?? = ln ? ?? · ln ? ?? .  
Now, let ln ? ?? = ?? , ln ? ?? = ?? 
ln ? 2 = ?? , ln ? ?? = ?? 
Now, from Eqs. (i) and (ii), we get 
?? · ?? = ???? and ?? ( ?? + ?? ) = ?? ( ?? + ?? ) 
? ?? =
????
?? 
? ? ?? (
????
?? + ?? ) = ?? ( ?? + ?? )
? ? ?? 2
?? + ?? 2
?? = ?? 2
( ?? + ?? )
? ? ( ?? 2
- ?? 2
) ( ?? + ?? ) = 0
? ? ?? 2
= ?? 2
?? = ± ?? 
So, from the equations, there are two cases: 
Case ?? : 
?? = ?? 
In this case, since ?? and ?? are natural logarithms of positive numbers ?? and ?? respectively, this implies 
that ?? = ?? . However, this cannot be true as a, ?? , and ?? are given to be distinct positive real numbers. 
Page 2


JEE Mains Previous Year Questions 
(2021-2024): Logarithm 
2023 
Q1: Let ?? , ?? , ?? be three distinct positive real numbers such that ( ?? ?? )
?? ?? ?? ?? ? ?? = ( ???? )
?? ?? ?? ?? ? ?? and ?? ?? ?? ?? ?? ? ?? =
?? ?? ?? ?? ?? ? ?? . 
Then, ?? ?? + ?? ???? is equal to    [JEE Main 2023 (Online) 10th April Morning Shift] 
Ans: 8  
Given, ( 2 ?? )
ln ? ?? = ( ???? )
ln ? ?? , where 2 ?? > 0 , ???? > 0 
? ln ? ?? ( ln ? 2 + ln ? ?? ) = ln ? ?? ( ln ? ?? + ln ? ?? ) . 
and ( ?? )
ln ? 2
= ( ?? )
ln ? ?? 
? ln ? 2 · ln ? ?? = ln ? ?? · ln ? ?? .  
Now, let ln ? ?? = ?? , ln ? ?? = ?? 
ln ? 2 = ?? , ln ? ?? = ?? 
Now, from Eqs. (i) and (ii), we get 
?? · ?? = ???? and ?? ( ?? + ?? ) = ?? ( ?? + ?? ) 
? ?? =
????
?? 
? ? ?? (
????
?? + ?? ) = ?? ( ?? + ?? )
? ? ?? 2
?? + ?? 2
?? = ?? 2
( ?? + ?? )
? ? ( ?? 2
- ?? 2
) ( ?? + ?? ) = 0
? ? ?? 2
= ?? 2
?? = ± ?? 
So, from the equations, there are two cases: 
Case ?? : 
?? = ?? 
In this case, since ?? and ?? are natural logarithms of positive numbers ?? and ?? respectively, this implies 
that ?? = ?? . However, this cannot be true as a, ?? , and ?? are given to be distinct positive real numbers. 
Case 2 : 
?? = - ?? 
In this case, ln ? ?? = - ln ? ?? 
? ?? × ?? = 1 
? ?? =
1
?? 
Also, ?? + ?? = 0 (from the equations above) 
? ? ln ? ?? + ln ? ?? = 0
? ? ln ? ( ?? × ?? ) = 0
? ? ?? × ?? = 1
 
Given ?? =
1
?? and ?? × ?? = 1 ? ?? = ?? 
Thus, in the case where ?? = - ?? , the possible values are: 
?? =
1
?? ?? = ?? 
If ???? = 1 ? ( 2 ?? )
ln ? ?? = 1 
? ?? = 1 / 2 
So, 6 ?? + 5 ???? = 6 (
1
2
) + 5 = 3 + 5 = 8 
Q2: Let ?? = { ?? : ??????
?? ? ( ?? ?? ?? - ?? + ???? ) - ??????
?? ? (
?? ?? · ?? ?? ?? - ?? + ?? ) = ?? }. Then the maximum value of ?? for 
which the equation ?? ?? - ?? ( ?
?? ? ?? ? ?? )
?? ?? + ?
?? ? ?? ? ( ?? + ?? )
?? ?? = ?? has real roots, is      [JEE Main 2023 
(Online) 25th January Morning Shift] 
Ans: 25 
Page 3


JEE Mains Previous Year Questions 
(2021-2024): Logarithm 
2023 
Q1: Let ?? , ?? , ?? be three distinct positive real numbers such that ( ?? ?? )
?? ?? ?? ?? ? ?? = ( ???? )
?? ?? ?? ?? ? ?? and ?? ?? ?? ?? ?? ? ?? =
?? ?? ?? ?? ?? ? ?? . 
Then, ?? ?? + ?? ???? is equal to    [JEE Main 2023 (Online) 10th April Morning Shift] 
Ans: 8  
Given, ( 2 ?? )
ln ? ?? = ( ???? )
ln ? ?? , where 2 ?? > 0 , ???? > 0 
? ln ? ?? ( ln ? 2 + ln ? ?? ) = ln ? ?? ( ln ? ?? + ln ? ?? ) . 
and ( ?? )
ln ? 2
= ( ?? )
ln ? ?? 
? ln ? 2 · ln ? ?? = ln ? ?? · ln ? ?? .  
Now, let ln ? ?? = ?? , ln ? ?? = ?? 
ln ? 2 = ?? , ln ? ?? = ?? 
Now, from Eqs. (i) and (ii), we get 
?? · ?? = ???? and ?? ( ?? + ?? ) = ?? ( ?? + ?? ) 
? ?? =
????
?? 
? ? ?? (
????
?? + ?? ) = ?? ( ?? + ?? )
? ? ?? 2
?? + ?? 2
?? = ?? 2
( ?? + ?? )
? ? ( ?? 2
- ?? 2
) ( ?? + ?? ) = 0
? ? ?? 2
= ?? 2
?? = ± ?? 
So, from the equations, there are two cases: 
Case ?? : 
?? = ?? 
In this case, since ?? and ?? are natural logarithms of positive numbers ?? and ?? respectively, this implies 
that ?? = ?? . However, this cannot be true as a, ?? , and ?? are given to be distinct positive real numbers. 
Case 2 : 
?? = - ?? 
In this case, ln ? ?? = - ln ? ?? 
? ?? × ?? = 1 
? ?? =
1
?? 
Also, ?? + ?? = 0 (from the equations above) 
? ? ln ? ?? + ln ? ?? = 0
? ? ln ? ( ?? × ?? ) = 0
? ? ?? × ?? = 1
 
Given ?? =
1
?? and ?? × ?? = 1 ? ?? = ?? 
Thus, in the case where ?? = - ?? , the possible values are: 
?? =
1
?? ?? = ?? 
If ???? = 1 ? ( 2 ?? )
ln ? ?? = 1 
? ?? = 1 / 2 
So, 6 ?? + 5 ???? = 6 (
1
2
) + 5 = 3 + 5 = 8 
Q2: Let ?? = { ?? : ??????
?? ? ( ?? ?? ?? - ?? + ???? ) - ??????
?? ? (
?? ?? · ?? ?? ?? - ?? + ?? ) = ?? }. Then the maximum value of ?? for 
which the equation ?? ?? - ?? ( ?
?? ? ?? ? ?? )
?? ?? + ?
?? ? ?? ? ( ?? + ?? )
?? ?? = ?? has real roots, is      [JEE Main 2023 
(Online) 25th January Morning Shift] 
Ans: 25 
log
2
? ( 9
2 ?? - 4
+ 13 ) - log
2
? (
5
2
· 3
2 ?? - 4
+ 1 ) = 2
? ?
9
2 ?? - 4
+ 13
5
2
3
2 ?? - 4
+ 1
= 4
? ? ?? = 2 or 3
? ? ?
?? ? S
? ?? = 5 and ? ?
?? ? S
? ( ?? + 1 )
2
= 25
? ? ?? 2
- 50 ?? + 25 ?? = 0 has real roots 
? ? ?? = 25
? ? ?? m a x
= 25
 
Q3: The number of integral solutions ?? of ??????
( ?? +
?? ?? )
? (
?? - ?? ?? ?? - ?? )
?? = ?? is: 
A. 8 
B. 7 
C. 5 
D. 6    [JEE Main 2023 (Online) 11th April Morning Shift] 
Ans: ( d ) 
log
( ?? +
7
2
)
? (
?? - 7
2 ?? - 3
)
2
= 0 
Domain : 
?? +
7
2
> 0 
?? >
- 7
2
 
?? +
7
2
? 1 
?? ?
- 5
2
 
?? - 7
2 ?? - 3
? 0 
?? ? 7 
?? ?
3
2
 
Taking intersection : ?? ? (
- 7
2
, 8 ) - { -
5
2
,
3
2
, 7 } 
Now log
a
? b = 0 if a > 1 and b = 1 
Page 4


JEE Mains Previous Year Questions 
(2021-2024): Logarithm 
2023 
Q1: Let ?? , ?? , ?? be three distinct positive real numbers such that ( ?? ?? )
?? ?? ?? ?? ? ?? = ( ???? )
?? ?? ?? ?? ? ?? and ?? ?? ?? ?? ?? ? ?? =
?? ?? ?? ?? ?? ? ?? . 
Then, ?? ?? + ?? ???? is equal to    [JEE Main 2023 (Online) 10th April Morning Shift] 
Ans: 8  
Given, ( 2 ?? )
ln ? ?? = ( ???? )
ln ? ?? , where 2 ?? > 0 , ???? > 0 
? ln ? ?? ( ln ? 2 + ln ? ?? ) = ln ? ?? ( ln ? ?? + ln ? ?? ) . 
and ( ?? )
ln ? 2
= ( ?? )
ln ? ?? 
? ln ? 2 · ln ? ?? = ln ? ?? · ln ? ?? .  
Now, let ln ? ?? = ?? , ln ? ?? = ?? 
ln ? 2 = ?? , ln ? ?? = ?? 
Now, from Eqs. (i) and (ii), we get 
?? · ?? = ???? and ?? ( ?? + ?? ) = ?? ( ?? + ?? ) 
? ?? =
????
?? 
? ? ?? (
????
?? + ?? ) = ?? ( ?? + ?? )
? ? ?? 2
?? + ?? 2
?? = ?? 2
( ?? + ?? )
? ? ( ?? 2
- ?? 2
) ( ?? + ?? ) = 0
? ? ?? 2
= ?? 2
?? = ± ?? 
So, from the equations, there are two cases: 
Case ?? : 
?? = ?? 
In this case, since ?? and ?? are natural logarithms of positive numbers ?? and ?? respectively, this implies 
that ?? = ?? . However, this cannot be true as a, ?? , and ?? are given to be distinct positive real numbers. 
Case 2 : 
?? = - ?? 
In this case, ln ? ?? = - ln ? ?? 
? ?? × ?? = 1 
? ?? =
1
?? 
Also, ?? + ?? = 0 (from the equations above) 
? ? ln ? ?? + ln ? ?? = 0
? ? ln ? ( ?? × ?? ) = 0
? ? ?? × ?? = 1
 
Given ?? =
1
?? and ?? × ?? = 1 ? ?? = ?? 
Thus, in the case where ?? = - ?? , the possible values are: 
?? =
1
?? ?? = ?? 
If ???? = 1 ? ( 2 ?? )
ln ? ?? = 1 
? ?? = 1 / 2 
So, 6 ?? + 5 ???? = 6 (
1
2
) + 5 = 3 + 5 = 8 
Q2: Let ?? = { ?? : ??????
?? ? ( ?? ?? ?? - ?? + ???? ) - ??????
?? ? (
?? ?? · ?? ?? ?? - ?? + ?? ) = ?? }. Then the maximum value of ?? for 
which the equation ?? ?? - ?? ( ?
?? ? ?? ? ?? )
?? ?? + ?
?? ? ?? ? ( ?? + ?? )
?? ?? = ?? has real roots, is      [JEE Main 2023 
(Online) 25th January Morning Shift] 
Ans: 25 
log
2
? ( 9
2 ?? - 4
+ 13 ) - log
2
? (
5
2
· 3
2 ?? - 4
+ 1 ) = 2
? ?
9
2 ?? - 4
+ 13
5
2
3
2 ?? - 4
+ 1
= 4
? ? ?? = 2 or 3
? ? ?
?? ? S
? ?? = 5 and ? ?
?? ? S
? ( ?? + 1 )
2
= 25
? ? ?? 2
- 50 ?? + 25 ?? = 0 has real roots 
? ? ?? = 25
? ? ?? m a x
= 25
 
Q3: The number of integral solutions ?? of ??????
( ?? +
?? ?? )
? (
?? - ?? ?? ?? - ?? )
?? = ?? is: 
A. 8 
B. 7 
C. 5 
D. 6    [JEE Main 2023 (Online) 11th April Morning Shift] 
Ans: ( d ) 
log
( ?? +
7
2
)
? (
?? - 7
2 ?? - 3
)
2
= 0 
Domain : 
?? +
7
2
> 0 
?? >
- 7
2
 
?? +
7
2
? 1 
?? ?
- 5
2
 
?? - 7
2 ?? - 3
? 0 
?? ? 7 
?? ?
3
2
 
Taking intersection : ?? ? (
- 7
2
, 8 ) - { -
5
2
,
3
2
, 7 } 
Now log
a
? b = 0 if a > 1 and b = 1 
Or 
?? ? ( 0 , 1 ) and ?? ? ( 0 , 1 ) 
Case I: ?? +
7
2
> 1 and (
?? - 7
2 ?? - 3
)
2
= 1 
? ?? > -
5
2
 
and 
? ( 2 ?? - 3 )
2
- ( ?? - 7 )
2
= 0
? ( 2 ?? - 3 + ?? - 7 ) ( 2 ?? - 3 - ?? + 7 ) = 0
? ( 3 ?? - 10 ) ( ?? + 4 ) = 0
?? ? [ - 4 ,
10
3
]
 Intersection : x ? (
- 5
2
,
10
3
]
 
Intersection : ?? ? (
- 5
2
,
10
3
] 
Case II: ?? +
7
2
? ( 0 , 1 ) and (
?? - 7
2 ?? - 3
)
2
? ( 0 , 1 ) 
? ? 0 < ?? +
7
2
< 1
? -
7
2
< ?? <
- 5
2
 
and 
(
?? - 7
2 ?? - 3
)
2
< 1
? ? ( ?? - 7 )
2
< ( 2 ?? - 3 )
2
 
? ?? ? ( - 8 , - 4 ) ? (
10
3
, 8 ) 
No common values of x. 
Hence intersection with feasible region. 
We get ?? ? (
- 5
2
,
10
3
] - {
3
2
} 
Integral value of ?? are { - 2 , - 1 , 0 , 1 , 2 , 3 } 
No. of integral values = 6 
Page 5


JEE Mains Previous Year Questions 
(2021-2024): Logarithm 
2023 
Q1: Let ?? , ?? , ?? be three distinct positive real numbers such that ( ?? ?? )
?? ?? ?? ?? ? ?? = ( ???? )
?? ?? ?? ?? ? ?? and ?? ?? ?? ?? ?? ? ?? =
?? ?? ?? ?? ?? ? ?? . 
Then, ?? ?? + ?? ???? is equal to    [JEE Main 2023 (Online) 10th April Morning Shift] 
Ans: 8  
Given, ( 2 ?? )
ln ? ?? = ( ???? )
ln ? ?? , where 2 ?? > 0 , ???? > 0 
? ln ? ?? ( ln ? 2 + ln ? ?? ) = ln ? ?? ( ln ? ?? + ln ? ?? ) . 
and ( ?? )
ln ? 2
= ( ?? )
ln ? ?? 
? ln ? 2 · ln ? ?? = ln ? ?? · ln ? ?? .  
Now, let ln ? ?? = ?? , ln ? ?? = ?? 
ln ? 2 = ?? , ln ? ?? = ?? 
Now, from Eqs. (i) and (ii), we get 
?? · ?? = ???? and ?? ( ?? + ?? ) = ?? ( ?? + ?? ) 
? ?? =
????
?? 
? ? ?? (
????
?? + ?? ) = ?? ( ?? + ?? )
? ? ?? 2
?? + ?? 2
?? = ?? 2
( ?? + ?? )
? ? ( ?? 2
- ?? 2
) ( ?? + ?? ) = 0
? ? ?? 2
= ?? 2
?? = ± ?? 
So, from the equations, there are two cases: 
Case ?? : 
?? = ?? 
In this case, since ?? and ?? are natural logarithms of positive numbers ?? and ?? respectively, this implies 
that ?? = ?? . However, this cannot be true as a, ?? , and ?? are given to be distinct positive real numbers. 
Case 2 : 
?? = - ?? 
In this case, ln ? ?? = - ln ? ?? 
? ?? × ?? = 1 
? ?? =
1
?? 
Also, ?? + ?? = 0 (from the equations above) 
? ? ln ? ?? + ln ? ?? = 0
? ? ln ? ( ?? × ?? ) = 0
? ? ?? × ?? = 1
 
Given ?? =
1
?? and ?? × ?? = 1 ? ?? = ?? 
Thus, in the case where ?? = - ?? , the possible values are: 
?? =
1
?? ?? = ?? 
If ???? = 1 ? ( 2 ?? )
ln ? ?? = 1 
? ?? = 1 / 2 
So, 6 ?? + 5 ???? = 6 (
1
2
) + 5 = 3 + 5 = 8 
Q2: Let ?? = { ?? : ??????
?? ? ( ?? ?? ?? - ?? + ???? ) - ??????
?? ? (
?? ?? · ?? ?? ?? - ?? + ?? ) = ?? }. Then the maximum value of ?? for 
which the equation ?? ?? - ?? ( ?
?? ? ?? ? ?? )
?? ?? + ?
?? ? ?? ? ( ?? + ?? )
?? ?? = ?? has real roots, is      [JEE Main 2023 
(Online) 25th January Morning Shift] 
Ans: 25 
log
2
? ( 9
2 ?? - 4
+ 13 ) - log
2
? (
5
2
· 3
2 ?? - 4
+ 1 ) = 2
? ?
9
2 ?? - 4
+ 13
5
2
3
2 ?? - 4
+ 1
= 4
? ? ?? = 2 or 3
? ? ?
?? ? S
? ?? = 5 and ? ?
?? ? S
? ( ?? + 1 )
2
= 25
? ? ?? 2
- 50 ?? + 25 ?? = 0 has real roots 
? ? ?? = 25
? ? ?? m a x
= 25
 
Q3: The number of integral solutions ?? of ??????
( ?? +
?? ?? )
? (
?? - ?? ?? ?? - ?? )
?? = ?? is: 
A. 8 
B. 7 
C. 5 
D. 6    [JEE Main 2023 (Online) 11th April Morning Shift] 
Ans: ( d ) 
log
( ?? +
7
2
)
? (
?? - 7
2 ?? - 3
)
2
= 0 
Domain : 
?? +
7
2
> 0 
?? >
- 7
2
 
?? +
7
2
? 1 
?? ?
- 5
2
 
?? - 7
2 ?? - 3
? 0 
?? ? 7 
?? ?
3
2
 
Taking intersection : ?? ? (
- 7
2
, 8 ) - { -
5
2
,
3
2
, 7 } 
Now log
a
? b = 0 if a > 1 and b = 1 
Or 
?? ? ( 0 , 1 ) and ?? ? ( 0 , 1 ) 
Case I: ?? +
7
2
> 1 and (
?? - 7
2 ?? - 3
)
2
= 1 
? ?? > -
5
2
 
and 
? ( 2 ?? - 3 )
2
- ( ?? - 7 )
2
= 0
? ( 2 ?? - 3 + ?? - 7 ) ( 2 ?? - 3 - ?? + 7 ) = 0
? ( 3 ?? - 10 ) ( ?? + 4 ) = 0
?? ? [ - 4 ,
10
3
]
 Intersection : x ? (
- 5
2
,
10
3
]
 
Intersection : ?? ? (
- 5
2
,
10
3
] 
Case II: ?? +
7
2
? ( 0 , 1 ) and (
?? - 7
2 ?? - 3
)
2
? ( 0 , 1 ) 
? ? 0 < ?? +
7
2
< 1
? -
7
2
< ?? <
- 5
2
 
and 
(
?? - 7
2 ?? - 3
)
2
< 1
? ? ( ?? - 7 )
2
< ( 2 ?? - 3 )
2
 
? ?? ? ( - 8 , - 4 ) ? (
10
3
, 8 ) 
No common values of x. 
Hence intersection with feasible region. 
We get ?? ? (
- 5
2
,
10
3
] - {
3
2
} 
Integral value of ?? are { - 2 , - 1 , 0 , 1 , 2 , 3 } 
No. of integral values = 6 
Q4: If the solution of the equation ??????
???? ?? ? ?? ? ?? ???? ? ?? + ?? ??????
?? ?? ?? ? ?? ? ?? ?? ?? ? ?? = ?? , ?? ? ( ?? ,
?? ?? ), is ?? ???? - ?? ? (
?? + v ?? ?? ), 
where ?? , ?? are integers, then ?? + ?? is equal to: 
A. 3 
B. 6 
C. 4 
D. 5      [JEE Main 2023 (Online) 30th January Morning Shift] 
Ans: (c) 
log
c o s ? ?? ? c o t ? ?? + 4 log
s i n ? ?? ? t a n ? ?? = 1
? ? log
c o s ? ?? ? c o t ? ?? - 4 log
s i n ? ?? ? c o t ? ?? = 1
? ? 1 - log
c o s ? ?? ? sin ? ?? - 4 - 4 log
s i n ? ?? ? c o s ? ?? = 1
 Let log
c o s ? ?? ? sin ? ?? = ?? ?? +
4
?? = 4
? ? ?? = 2
sin ? ?? = c o s
2
? ?? ? ? sin ? ?? = 1 - sin
2
? ?? ? ? sin
2
? ?? + sin ? ?? - 1
= 0
? ? sin ? ?? =
- 1 ± v 5
2
 as ?? ? ( 0 ,
?? 2
)
sin ? ?? =
v 5 - 1
2
?? = sin
- 1
? (
- 1 + v 5
2
)
? ? ?? = - 1 , ?? = 5
?? + ?? = 4
 
 
 
 
 
 
 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

FAQs on Logarithm: JEE Mains Previous Year Questions (2021-2024) - Mathematics (Maths) for JEE Main & Advanced

1. What is the basic concept of logarithm?
Ans. Logarithm is the inverse operation of exponentiation. It helps in solving problems involving exponential functions by transforming them into simpler forms using logarithmic properties.
2. How is the logarithm of a number calculated?
Ans. The logarithm of a number is calculated by taking the exponent to which a base number must be raised to obtain the given number. For example, log₂8 = 3 because 2³ = 8.
3. What are the properties of logarithms?
Ans. Some key properties of logarithms include the product rule (logₐ(MN) = logₐM + logₐN), quotient rule (logₐ(M/N) = logₐM - logₐN), and power rule (logₐMᴺ = N*logₐM). These properties help simplify logarithmic expressions.
4. How are logarithms used in real-life applications?
Ans. Logarithms are used in various real-life applications such as earthquake magnitude scales (Richter scale), measuring sound intensity (decibels), and calculating pH levels in chemistry. They help compress large ranges of values into more manageable scales.
5. What are common mistakes to avoid when working with logarithms?
Ans. Common mistakes when working with logarithms include forgetting to apply logarithmic properties correctly, misinterpreting the base of the logarithm, and not simplifying expressions before solving. It is important to pay attention to detail and review basic logarithmic rules to avoid errors.
209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

study material

,

MCQs

,

video lectures

,

Viva Questions

,

Logarithm: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Summary

,

Free

,

Extra Questions

,

Sample Paper

,

Logarithm: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

Objective type Questions

,

ppt

,

Important questions

,

mock tests for examination

,

practice quizzes

,

Previous Year Questions with Solutions

,

Semester Notes

,

shortcuts and tricks

,

Logarithm: JEE Mains Previous Year Questions (2021-2024) | Mathematics (Maths) for JEE Main & Advanced

,

pdf

,

past year papers

,

Exam

;