JEE Exam  >  JEE Notes  >  Mathematics (Maths) Class 12  >  NCERT Exemplar: Inverse Trigonometric Functions

NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE PDF Download

NCERT Exemplar: Inverse Trigonometric Functions


Short Answer Type Questions

Q.1. Find the value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
We know thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE[∵ tan- 1(- x) = - tan - 1 x]
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.2. EvaluateNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.3. Prove thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
L.H.S.NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
= cot [cot– 1 (7)] = 7  R.H.S.
Hence proved.

Q.4. Find the value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.5. Find the value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
We know thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.6. Show that NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Ans.
L.H.S. 2 tan– 1 (– 3) = – 2 tan– 1 (3)
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence proved.

Q.7. Find the real solutions of the equation
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ x2 + x = 0 ⇒ x(x + 1) = 0
⇒ x = 0 or x + 1 = 0 ⇒ x = 0 or x = – 1
Hence the real solutions are x = 0 and x = – 1.
Alternate Method:
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ x2 + x + 1 = 1 ⇒ x2 + x = 0
⇒ x(x + 1) = 0 ⇒ x = 0 or x + 1 = 0
∴ x = 0, x = – 1

Q.8. Find the value of the expression 
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.9. If 2 tan–1 (cos θ) = tan–1 (2 cosec θ), then show that θ =NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
where n is any integer.
Ans.
2 tan– 1(cos θ) = tan– 1(2 cosec θ)
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ cos θ sin θ = sin2θ
⇒ cos θ sin θ – sin2θ = 0 ⇒ sin θ(cos θ - sin θ) = 0
⇒ sin θ = 0  or cos θ - sin θ = 0 ⇒ sin θ = 0  or 1 - tan θ = 0
⇒ θ = 0  or tan θ = 1 ⇒ θ = 0° orNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence proved.

Q.10. Show that NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
L.H.S. NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
R.H.S. NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
L.H.S. = R.H.S.  Hence proved.


Q.11. Solve the following equationNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
Given thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Squaring both sides we get,
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Long Answer Type Questions

Q.12. Prove thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
L.H.S.NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Put x2 = cos θ ∴ θ = cos– 1 x2
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
[Dividing the Nr. and Den. by cos θ/2]
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence proved.

Q.13. Find the simplified form of

NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
Given thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Put NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
= cos– 1 [cos (y – x)] = y – x
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.14. Prove thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
L.H.SNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Using sin– 1 x + sin– 1 y =NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEER.H.S. Hence proved.

Q.15. Show thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NowNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence proved.

Q.16. Prove thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.17. Find the value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.18. Show thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEand justify why the other value
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEis ignored?
Ans.
To prove thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE[∴ tan (tan– 1 θ) = θ]
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.19. If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
Ans.
If a1, a2, a3, ..., an are the terms of an arithmetic progression
∴ d = a2 – a1 = a3 – a2 = a4 – a3 ....
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ tan [tan-1 a2 - tan-1 a1 + tan-1 a3 tan-1 a2 + tan-1 a4 tan-1 a3 + ... + tan-1 an tan-1 an-1]
⇒ tan [tan-1 an tan-1 a1]
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Objective Type Questions

Q.20. Which of the following is the principal value branch of cos–1x?
(a)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(b) (0, π )
(c) [0, π]
(d)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans. (c)
Solution.
Principal value branch of cos– 1 x is [0, π]. Hence the correct answer is (c).

Q.21. Which of the following is the principal value branch of cosec–1x?
(a)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans. (d)
Solution.
Principal value branch of cosec– 1 x is
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEas cosec– 1(0) = ∞ (not defined).
Hence, the correct answer is (d).

Q.22. If 3 tan–1 x + cot–1 x = π, then x equals
(a) 0 
(b) 1 
(c) – 1 
(d) 1/2
Ans. (b)
Solution.
Given that 3 tan– 1 x + cot– 1 x = θ
⇒ 2 tan– 1 x + tan– 1 x + cot– 1 x = θ
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
∴ x = 1
Hence, the correct answer is (b).

Q.23. The value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

(a)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans. (d)
Solution.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (d).

Q.24. The domain of the function cos–1 (2x – 1) is
(a) [0, 1]
(b) [–1, 1]

(c) ( –1, 1)
(d) [0, π]

Ans. (a)
Solution.
The given function is cos– 1(2x – 1)
Let f(x) = cos– 1(2x – 1)
– 1 ≤ 2x – 1 ≤ 1 ⇒ - 1 + 1 ≤ 2x ≤ 1 + 1
0 ≤ 2x ≤ 2 ⇒ 0 ≤ x ≤ 1
∴ domain of the given function is [0, 1].
Hence, the correct answer is (a)

Q.25. The domain of the function defined by f (x) = sin–1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(a) [1, 2]
(b) [–1, 1]

(c) [0, 1]
(d) none of these

Ans. (a)
Solution.
LetNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ 0 ≤ x - 1 ≤ 1 ⇒ 1 ≤ x ≤ 2 ⇒ x ∈ [1, 2]
Hence, the correct answer is (a).

Q.26. IfNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEthen x is equal to
(a) 1/5
(b) 2/5
(c) 0
(d) 1

Ans. (b)
Solution.
Given thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (b).

Q.27. The value of sin (2 tan–1 (.75)) is equal to 
(a) 0.75
(b) 1.5 
(c) 0.96 
(d) sin 1.5
Ans. (c)
Solution.
Given that sin [2 tan– 1 (0.75)]
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
= sin [sin– 1 (0.96)]
= 0.96
Hence, the correct answer is (c).

Q.28. The value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE is equal to
(a)2/π
(b)3π/2
(c)5π/2
(d)7π/2
Ans. (a)
Solution.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (a).

Q.29. The value of the expression NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(a) π/6
(b) 5π/6
(c) 7π/6
(d) 1
Ans. (b)
Solution.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (b).

Q.30. If tan–1 x + tan–1y =NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEthen cot–1 x + cot–1 y equals
(a)π/ 5
(b)2π/ 5
(c)3π/5
(d) π
Ans. (a)
Solution.
Given that tan– 1 x + tan– 1 y =NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEENCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (a).

Q.31. IfNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEwhere a, x ∈ ]0, 1,
then the value of x is
(a) 0
(b) a/2

(c) a
(d)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans. (d)
Solution.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ 4 tan– 1 a = 2 tan– 1 x ⇒ 2 tan– 1 a = tan– 1 x
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (d).

Q.32. The value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(a) 25/24
(b) 25/7
(c) 24/25
(d) 7/24
Ans. (d)
Solution.
We have,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
LetNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (d).

Q.33. The value of the expressionNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(a)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(d)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Ans. (b)
Solution.
We have,NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
LetNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (b).

Q.34. If | x | ≤  1, then 2 tan–1 x + sin–1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEis equal to
(a) 4 tan–1
(b) 0 
(c) 2/π
(d) π
Ans. (a)
Solution.
Here, we have 2 tan-1 sin -1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (a).

Q.35. If  cos–1 α + cos–1 β + cos–1 γ = 3π, then α (β + γ) + β (γ + α) + γ (α + β) equals 
(a) 0 
(b) 1 
(c) 6 
(d) 12
Ans. (c)
Solution.

We have cos–1 α + cos–1 β + cos–1 γ = 3π
⇒ cos–1 α + cos–1 β + cos–1 γ = π + π + π
⇒ cos–1 α = π, cos–1 β = π and cos–1 γ = π
⇒ α = cos π, β = cos π and γ = cos π
α  = – 1, β = – 1 and γ = – 1
Which gives a = β = γ = –1
So α (β + γ) + β( γ+ α) + γ(α  + β)
⇒ (– 1)(– 1 – 1) + (– 1)(– 1 – 1) + (– 1)(– 1 – 1)
⇒ (– 1)(– 2) + (– 1)(– 2) + (– 1)(– 2) ⇒ 2 + 2 + 2 ⇒ 6
Hence, the correct answer is (c).

Q.36. The number of real solutions of the equation
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(a) 0 
(b) 1 
(c) 2 
(d) infinite
Ans. (d)
Solution.

NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Which does not satisfy for any value of x.
Hence, the correct answer is (d).

Q.37. If cos–1x > sin–1x, then
(a)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(b)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(c)NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
(d) x > 0
Ans. (c)
Solution.

 Here, given that cos– 1 x > sin– 1 x
⇒ sin [cos– 1 x] > x
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
We know that – 1 ≤ x ≤ 1
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the correct answer is (c).

Fill in the blanks 

Q.38. The principal value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEis______.
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, Principal value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.39. The value ofNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEis_____.
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the value of NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.40. If cos (tan–1 x + cot–1 √3 ) = 0, then value of x is_____.
Ans.
Given that
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the value of x is √3 .

Q.41. The set of values of NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE is_____.
Ans.
LetNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE⇒sec x =NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Since, the domain of sec– 1 x is R – {– 1, 1} andNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, sec-1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEhas no set of values.

Q.42. The principal value of tan–1 √3 is_____.

Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence the principal value of tan - 1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.43. The value of cos–1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEis_____.
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the value of cos-1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Q.44. The value of cos (sin–1 x + cos–1 x), |x| ≤ 1 is______ .

Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the value of cos (sin– 1 x + cos– 1 x) = 0.

Q.45. The value of expression tanNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
is______ .
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
Hence, the value of the given expression is 1.

Q.46. If y = 2 tan–1 x + sin–1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEfor all x, then____< y <____.
Ans.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ y = 2 tan– 1 x + 2 tan– 1 x
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ y = 4 tan– 1 x
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE⇒ – 2π < y < 2π
Hence, the value of y is (– 2π, 2π).

Q.47. The result tan–1x – tan–1y = tan–1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEEis true when value of xy is _____.
Ans.
The given result is true when xy > – 1.

Q.48. The value of cot–1 (–x) for all x ∈ R in terms of cot–1x is _______.
Ans.
cot–1(– x) = π – cot–1 x, x ∈ R [∵ as cot-1 (- x) = π - cot-1 x]

State True or False 

Q.49. All trigonometric functions have inverse over their respective domains.
Ans.
False.
We know that all inverse trigonometric functions are restricted over their domains.

Q.50. The value of the expression (cos–1 x)2 is equal to sec2 x.
Ans.
False.
We know that cos–1 x = sec-1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
So (cos–1 x)2 ≠ sec2 x

Q.51. The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
Ans.
True.
We know that all trigonometric functions are restricted over their domains to obtain their inverse functions.

Q.52. The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
Ans.
True.

Q.53. The graph of inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging x and y axes.
Ans.
True.
We know that the domain and range are interchanged in the graph of inverse trigonometric functions to that of their corresponding trigonometric functions.

Q.54. The minimum value of n for which tan–1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
 is valid is 5.
Ans.
False.
Given thatNCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE
⇒ n > p ⇒ n > 3.14
Hence, the value of n is 4.

Q.55. The principal value of sin–1NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

Ans.
True.
NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE 

The document NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE is a part of the JEE Course Mathematics (Maths) Class 12.
All you need of JEE at this link: JEE
204 videos|290 docs|139 tests

Top Courses for JEE

FAQs on NCERT Exemplar: Inverse Trigonometric Functions - Mathematics (Maths) Class 12 - JEE

1. What are the basic properties of inverse trigonometric functions?
Ans. The basic properties of inverse trigonometric functions include the principal value branch, the range of values they can take, and their relationship with the original trigonometric functions.
2. How are inverse trigonometric functions used in solving trigonometric equations?
Ans. Inverse trigonometric functions are used to solve trigonometric equations by undoing the trigonometric operations applied to find the original angle.
3. What are the restrictions on the domains of inverse trigonometric functions?
Ans. The domains of inverse trigonometric functions are restricted to ensure that they are one-to-one functions, which means that each input value corresponds to a unique output value.
4. How do inverse trigonometric functions help in finding angles in trigonometry problems?
Ans. Inverse trigonometric functions help in finding angles in trigonometry problems by allowing us to find the angle that corresponds to a specific trigonometric ratio.
5. Can inverse trigonometric functions be used to calculate the angles of a triangle?
Ans. Yes, inverse trigonometric functions can be used to calculate the angles of a triangle when the lengths of the sides are known, by using trigonometric ratios and their inverses to find the angles.
204 videos|290 docs|139 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

Summary

,

Viva Questions

,

NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

,

past year papers

,

Objective type Questions

,

video lectures

,

mock tests for examination

,

shortcuts and tricks

,

MCQs

,

ppt

,

Free

,

study material

,

Important questions

,

NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

,

Exam

,

Semester Notes

,

Extra Questions

,

pdf

,

practice quizzes

,

NCERT Exemplar: Inverse Trigonometric Functions | Mathematics (Maths) Class 12 - JEE

,

Sample Paper

;