JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  NCERT Solutions Exercise- 7.3: Integrals

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


1 	 / 	 2 1
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 . 3
F i n d 	 t h e 	 i n t e g r a l s 	 o f 	 t h e 	 f o l l o w i n g 	 f u n c t i o n s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 9 .
1 . 	
A n s . 	
= 	
U s i n g 	
= 	 	
= 	 	 	 	 	 	
U s i n g
= 	 	 A n s .
2 . 	
A n s . 	 	 	 = 	 	
= 	 	 	 	 	 	 	 	 U s i n g 	 2 s i n B 	 c o s A = s i n ( A + B ) - s i n ( A - B )
Page 2


1 	 / 	 2 1
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 . 3
F i n d 	 t h e 	 i n t e g r a l s 	 o f 	 t h e 	 f o l l o w i n g 	 f u n c t i o n s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 9 .
1 . 	
A n s . 	
= 	
U s i n g 	
= 	 	
= 	 	 	 	 	 	
U s i n g
= 	 	 A n s .
2 . 	
A n s . 	 	 	 = 	 	
= 	 	 	 	 	 	 	 	 U s i n g 	 2 s i n B 	 c o s A = s i n ( A + B ) - s i n ( A - B )
2 	 / 	 2 1
= 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
= 	 	
= 	 	
= 	 	 A n s .
3 . 	 	
A n s . 	 	
= 	
= 	 	 	 	 	 	
	 U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
= 	 	
= 	 	 	 	 	 	 	 	
= 	 	 	 	
U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
a n d 	 	 	 	 	 	 	 	
= 	 	
Page 3


1 	 / 	 2 1
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 . 3
F i n d 	 t h e 	 i n t e g r a l s 	 o f 	 t h e 	 f o l l o w i n g 	 f u n c t i o n s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 9 .
1 . 	
A n s . 	
= 	
U s i n g 	
= 	 	
= 	 	 	 	 	 	
U s i n g
= 	 	 A n s .
2 . 	
A n s . 	 	 	 = 	 	
= 	 	 	 	 	 	 	 	 U s i n g 	 2 s i n B 	 c o s A = s i n ( A + B ) - s i n ( A - B )
2 	 / 	 2 1
= 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
= 	 	
= 	 	
= 	 	 A n s .
3 . 	 	
A n s . 	 	
= 	
= 	 	 	 	 	 	
	 U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
= 	 	
= 	 	 	 	 	 	 	 	
= 	 	 	 	
U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
a n d 	 	 	 	 	 	 	 	
= 	 	
3 	 / 	 2 1
= 	 	 	 	 	 	 	 A n s .
4 . 	
A n s . 	 	
= 	 	
	
= 	 	
= 	 	
= 	 	
= 	
A n o t h e r 	 M e t h o d 	 	 	
	 	 	 	 	
U s i n g 	
	 	 	 	 l e t 	 	
	 	 t h e r e f o r e 	 	
Page 4


1 	 / 	 2 1
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 . 3
F i n d 	 t h e 	 i n t e g r a l s 	 o f 	 t h e 	 f o l l o w i n g 	 f u n c t i o n s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 9 .
1 . 	
A n s . 	
= 	
U s i n g 	
= 	 	
= 	 	 	 	 	 	
U s i n g
= 	 	 A n s .
2 . 	
A n s . 	 	 	 = 	 	
= 	 	 	 	 	 	 	 	 U s i n g 	 2 s i n B 	 c o s A = s i n ( A + B ) - s i n ( A - B )
2 	 / 	 2 1
= 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
= 	 	
= 	 	
= 	 	 A n s .
3 . 	 	
A n s . 	 	
= 	
= 	 	 	 	 	 	
	 U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
= 	 	
= 	 	 	 	 	 	 	 	
= 	 	 	 	
U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
a n d 	 	 	 	 	 	 	 	
= 	 	
3 	 / 	 2 1
= 	 	 	 	 	 	 	 A n s .
4 . 	
A n s . 	 	
= 	 	
	
= 	 	
= 	 	
= 	 	
= 	
A n o t h e r 	 M e t h o d 	 	 	
	 	 	 	 	
U s i n g 	
	 	 	 	 l e t 	 	
	 	 t h e r e f o r e 	 	
4 	 / 	 2 1
	 	 	 	 t h u s 	
	 	 	 	 A n s
5 . 	
A n s . 	 	
= 	 	
= 	
= 	
= 	 	
= 	 	
= 	 	
= 	 	
= 	
Page 5


1 	 / 	 2 1
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 . 3
F i n d 	 t h e 	 i n t e g r a l s 	 o f 	 t h e 	 f o l l o w i n g 	 f u n c t i o n s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 9 .
1 . 	
A n s . 	
= 	
U s i n g 	
= 	 	
= 	 	 	 	 	 	
U s i n g
= 	 	 A n s .
2 . 	
A n s . 	 	 	 = 	 	
= 	 	 	 	 	 	 	 	 U s i n g 	 2 s i n B 	 c o s A = s i n ( A + B ) - s i n ( A - B )
2 	 / 	 2 1
= 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
= 	 	
= 	 	
= 	 	 A n s .
3 . 	 	
A n s . 	 	
= 	
= 	 	 	 	 	 	
	 U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
= 	 	
= 	 	 	 	 	 	 	 	
= 	 	 	 	
U s i n g 	 2 c o s A 	 c o s B = c o s ( A + B ) + c o s ( A - B )
a n d 	 	 	 	 	 	 	 	
= 	 	
3 	 / 	 2 1
= 	 	 	 	 	 	 	 A n s .
4 . 	
A n s . 	 	
= 	 	
	
= 	 	
= 	 	
= 	 	
= 	
A n o t h e r 	 M e t h o d 	 	 	
	 	 	 	 	
U s i n g 	
	 	 	 	 l e t 	 	
	 	 t h e r e f o r e 	 	
4 	 / 	 2 1
	 	 	 	 t h u s 	
	 	 	 	 A n s
5 . 	
A n s . 	 	
= 	 	
= 	
= 	
= 	 	
= 	 	
= 	 	
= 	 	
= 	
5 	 / 	 2 1
A n o t h e r 	 m e t h o d 	 	 	 l e t 	 	 	 I = 	 	 	 	
l e t 	 c o s x = t
- s i n x 	 d x = d t
s i n x 	 	 d x 	 = 	 - d t
	 	 a n s .
	
6 . 	 	
A n s . 	 	
= 	 	
= 	 	 	 	 	 	 	 	 	 	 U s i n g 	 2 s i n 	 A 	 s i n 	 B = c o s 	 ( A - B ) 	 - 	 c o s 	 ( 	 A + B )
	 	
= 	 	 	
u s i n g 	 2 c o s A 	 s i n B = s i n ( A + B ) - s i n ( A - B )
Read More
209 videos|467 docs|187 tests

FAQs on NCERT Solutions Class 12 Maths Chapter 7 - Integrals

1. What are integrals?
Ans. Integrals are mathematical tools used to calculate the area under a curve or to find the accumulation of quantities over a given interval. They are an important concept in calculus and have applications in various fields such as physics, engineering, and economics.
2. What is the significance of integrals?
Ans. Integrals have several significant applications. They can be used to find the area between curves, calculate volumes of irregular shapes, determine the average value of a function, solve differential equations, and analyze rates of change. They are fundamental in understanding the concept of calculus and its real-world applications.
3. How do I solve integrals?
Ans. To solve integrals, you need to determine the antiderivative of the function to be integrated. This involves finding a function whose derivative is equal to the given function. Once you have the antiderivative, you can evaluate the integral by plugging in the limits of integration and subtracting the value at the lower limit from the value at the upper limit.
4. What are definite integrals?
Ans. Definite integrals are a type of integral that have specific limits of integration. They represent the accumulation of quantities over a given interval. The value of a definite integral gives the net signed area between the curve and the x-axis within the specified limits.
5. Are there any techniques to simplify integral calculations?
Ans. Yes, there are several techniques to simplify integral calculations. Some common methods include integration by substitution, integration by parts, partial fraction decomposition, and trigonometric substitutions. These techniques help to transform complex integrals into simpler forms, making them easier to solve.
Related Searches

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

,

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

,

Extra Questions

,

study material

,

Free

,

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

,

shortcuts and tricks

,

MCQs

,

Summary

,

video lectures

,

practice quizzes

,

Sample Paper

,

Semester Notes

,

Exam

,

Objective type Questions

,

mock tests for examination

,

Viva Questions

,

past year papers

,

Previous Year Questions with Solutions

,

ppt

,

pdf

,

Important questions

;