Class 7 Exam  >  Class 7 Notes  >  NCERT Textbooks & Solutions for Class 7  >  NCERT Solutions: Algebraic Expressions- 2

NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2

Exercise 10.2

Q1: If m = 2, find the value of: 

(i) m - 2    
(ii) 3m - 5    
(iii) 9 - 5m
(iv) 3m2 - 2m - 7
(v) 
NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2

Sol: 

(i) m - 2 = 2 - 2    [Putting m = 2]
= 0


(ii) 3m - 5 = 3 x 2 - 5     [Putting m = 2]
= 6 - 5 = 1


(iii) 9 - 5m = 9 - 5 x 2    [Putting m = 2]
= 9 - 10 = - 1


(iv) 3m2 - 2m - 7
= 3(2)2 - 2 (2) - 7        [Putting m = 2]
= 3 x 4 - 2 x 2 - 7
 = 12-4-7
 = 12- 11 = 1


(v)
  NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2     [Putting m = 2]

= 5 - 4 = 1


Q2: If p = -2, find the value of:

(i) 4p + 7
(ii) - 3p2 + 4p + 7
(iii) -2p3 - 3p2 +4/7 + 7

Sol: 

(i) 4p + 7 = 4 (- 2) + 7    [Putting p= -2]

= -8 + 7 = -1

(ii) -3p2+4p + 7
= -3 (-2)2+ 4 (-2) + 7    [Putting p = - 2]
= - 3 x 4 - 8 + 7
= - 12 - 8 + 7
= -20 + 7 = -13

(iii) - 2p3 - 3p2 +4p + 7
= - 2 (-2)3 - 3(-2)+ 4 (-2) + 7     [Putting p = - 2]
= -2 x(-8)-3 x4 -8 + 7
= 16-12-8 + 7
= -20 + 23 = 3

Q3: Find the value of the following expressions, when x = -1: 

(i) 2x - 7
(ii) -x + 2
(iii) x2 + 2x  + 1
(iv) 2x2- x - 2

Sol: 

(i) 2x - 7 = 2 (-1) - 7      [Putting x= - 1]
= - 2 - 7 = - 9

(ii) - x + 2 = - (-1) + 2     [Putting x= - 1]
= 1 + 2 = 3

(iii) x2 + 2 x + 1 = (-1)2 + 2 (-1) + 1    [Putting x= - 1]
= 1 - 2 + 1
= 2 - 2 = 0

(iv) 2x2- x - 2 = 2 (-1)2 - (-1) - 2     [Putting x= - 1]
= 2x1 + 1-2
= 2 + 1 - 2
= 3 - 2 = 1


Q4: If a = 2,b = -2, find the value of: 

(i) a2 + b
(ii) a2+ab + b2
(iii) a2 - b2

Sol: 

(i) a2 + b2 ( 2)2 + (- 2)2    [Putting a = 2. b = - 2 ]
= 4 + 4 = 8

(ii) a2+ab + b
= (2) + ( 2) (- 2) +(-2)2   [Putting a = 2. b = - 2 ]
= 4 - 4 + 4 = 4

(iii) a2 - b2 = (2)2 - (-2)2  [Putting a = 2,b = - 2]
= 4 - 4 = 0


Q5: When a = 0, b = -1, find the value of the given expressions: 

(i) 2a + 2b
(ii) 2a2+b2+1
(iii) 2a2b + 2ab2 +ab
(iv) a2+ab+2

Sol: 

(i) 2a + 2b = 2 (0) + 2 (-1)    [Putting a - 0,b = - 1]
= 0 - 2 = -2  

(ii) 2a2 + b2 + 1 = 2 (0)2 + (-1)2 + 1      [Putting a - 0,b = - 1]
= 2 x 0 + 1+ 1 = 0 + 2 = 2

(iii) 2a2b + 2ab2 + ab = 2(0)2 (-1) + 2 (0 )(-1)2 + (0 )(-1)     [Putting a - 0,b = - 1]
= 0 + 0 + 0 = 0

(iv) a2 +ab + 2 - (0)2 + (0) (-1) + 2   [Putting a - 0,b = - 1]
= 0 + 0 + 2 = 2


Q6: Simplify the expressions and find the value if x is equal to 2: 

(i) x + 7 + 4 (x- 5)
(ii) 3 (x + 2) + 5x - 7
(iii) 6x + 5 (x - 2)
(iv) 4 (2x - 1) + 3x + 11

Sol: 

(i) x + 7 + 4(x- 5) = x + 7 + 4x - 20 = x + 4 x + 7 - 20
= 5 x - 13 = 5 x 2 - 13                            [Putting x = 2]
= 10-13 = -3

(ii) 3 (x+ 2) + 5x - 7 = 3x + 6 + 5x -7 = 3x + 5x + 6 - 7
= 8x - 1 = 8 x 2-1                    [Putting x = -1]
= 16 - 1 = 15

(iii) 6x + 5 (x - 2) = 6x + 5x -10 = 11x - 10
= 11 x 2 - 10                      [Putting x = -1]
= 22 - 10 = 12

(iv) 4(2x - 1) + 3x + 11 = 8x - 4 + 3x +11 = 8x + 3a - 4 + 11
= 11a + 7 = 11 x 2 + 7 [Putting x = - 1]
= 22+7 = 29


Q7: Simplify these expressions and find their values if x = 3,a = -1, b = - 2 :

(i) 3x - 5 - x + 9
(ii) 2 - 8x + 4x + 4
(iii) 3a + 5 - 8a + 1
(iv) 10 - 3b - 4 - 5b
(v) 2a - 2b - 4 - 5 + a

Sol:

(i) 3a - 5 - x + 9 = 3x - x - 5 + 9 = 2x + 4
= 2x3+4         [Putting a = 3]
= 6 + 4 = 10

(ii) 2 - 8x + 4x + 4 = - 8x + 4x + 2 + 4 = -4x + 6
= - 4 x 3 + 6     [Putting a = 3]
= -12 + 6 =12

(iii) 3a + 5 - 8a + 1 = 3a - 8a + 5 + 1 = - 5a + 6
= -5(- 1) + 6       [Putting a = - 1]
= 5 + 6 = 11

(iv) 10 - 3b - 4 - 5b = - 3b - 5b + 10 - 4 = -8b+6
= -8 (-2)+ 6    [Putting b = -2]
= 16 + 6 = 22

(v) 2a - 2b - 4 - 5 + a = 2a + a - 2b - 4 - 5
= 3a - 2b - 9 = 3 (-1)-2 (-2) -9    [Putting a = -1 , b = - 2]
= -3 + 4 -9 = -8


Q8: 

(i) If z = 10, find the value of z3 - 3 (z - 10).
(ii) If p = - 10, find the value of p2 - 2p - 100

Sol: 

(i) z3 -3(z-10) = (10)3-3(10 - 10)       [Putting z = 10]
= 1000 - 3 x 0 = 1000- 0
= 1000

(ii) p2 - 2p - 100 = (-10)2 - 2 (-10) - 100    (Putting p = - 10]

= 100+ 20 - 100 = 20


Q9: What should be the value of a if the value of 2x2 + x - a equals to 5, when x = 0 ? 

Sol: 

Given: 2x2 + x - a = 5
⇒ 2 (0)2 + 0 - a = 5     [Putting x = 0]
⇒ 0 + 0 - a = 5
⇒ a = -5

Hence, the value of a is -5.


Q10: Simplify the expression and find its value when a = 5 and b = - 3: 2 (a2 + ab) + 3 - ab

Sol: 

Given: 2 (a2 + ab) + 3 - ab
⇒ 2a2 + 2ab + 3 - ab
⇒ 2a2 + 2ab - ab + 3
⇒ 2a2 + ab + 3
⇒ 2 (5)2 + (5) (-3) + 3   [Putting a = 5 , b = -3]
⇒ 2 x 25 - 15 + 3
⇒ 50 - 15 + 3
⇒ 38

The document NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2 is a part of the Class 7 Course NCERT Textbooks & Solutions for Class 7.
All you need of Class 7 at this link: Class 7
375 docs

Top Courses for Class 7

FAQs on NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2

1. What are algebraic expressions?
Ans. Algebraic expressions are mathematical phrases that include variables, constants, and arithmetic operators. These expressions represent a relation between one or more quantities. For example, 2x + 3y, where x and y are variables, and 2 and 3 are constants, is an algebraic expression.
2. How do you simplify algebraic expressions?
Ans. To simplify algebraic expressions, we need to combine like terms and perform operations such as addition, subtraction, multiplication, and division. For example, if we have an expression 2x + 3x, we can combine the like terms to get 5x. Similarly, if we have an expression 4x + 2y - 3x - y, we can combine the like terms to get x + y.
3. What are the different types of algebraic expressions?
Ans. There are three types of algebraic expressions - monomials, binomials, and trinomials. Monomials contain only one term, binomials contain two terms, and trinomials contain three terms. For example, 3x, 2x + 5, and 4x^2 + 3x - 2 are examples of monomials, binomials, and trinomials respectively.
4. How can we evaluate algebraic expressions?
Ans. To evaluate algebraic expressions, we need to substitute the given values of variables in the expression and perform the operations. For example, if we have an expression 3x + 4y, and we are given x = 2 and y = 3, we can substitute the values of x and y to get 3(2) + 4(3) = 6 + 12 = 18.
5. What are the applications of algebraic expressions?
Ans. Algebraic expressions have a wide range of applications in various fields such as engineering, physics, economics, and computer science. They are used to model and solve real-world problems such as calculating the distance traveled by a car, predicting the growth of a population, and designing a computer algorithm. Algebraic expressions are also used in financial analysis to calculate interest rates and investment returns.
375 docs
Download as PDF
Explore Courses for Class 7 exam

Top Courses for Class 7

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Important questions

,

Objective type Questions

,

shortcuts and tricks

,

video lectures

,

Sample Paper

,

Free

,

MCQs

,

Exam

,

practice quizzes

,

study material

,

Previous Year Questions with Solutions

,

Summary

,

Viva Questions

,

mock tests for examination

,

Extra Questions

,

NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2

,

pdf

,

NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2

,

ppt

,

Semester Notes

,

past year papers

,

NCERT Solutions for Class 8 Maths - Algebraic Expressions- 2

;