NEET Exam  >  NEET Notes  >  Physics Class 11  >  NCERT Textbook: Systems of Particles & Rotational Motion

NCERT Textbook: Systems of Particles & Rotational Motion | Physics Class 11 - NEET PDF Download

Download, print and study this document offline
119 videos|491 docs|98 tests

FAQs on NCERT Textbook: Systems of Particles & Rotational Motion - Physics Class 11 - NEET

1. What are the different types of systems of particles?
Ans. There are mainly three types of systems of particles - isolated system, closed system, and open system. In an isolated system, no external force acts on the system, and the total linear momentum and total angular momentum remain conserved. In a closed system, no external force acts on the system, but external torque may be present, causing changes in angular momentum. In an open system, external forces and torques act on the system, leading to changes in both linear and angular momentum.
2. How is the center of mass of a system of particles determined?
Ans. The center of mass of a system of particles can be determined by considering the weighted average of the positions of all the particles in the system. The center of mass is calculated using the formula: Center of Mass = (m1r1 + m2r2 + ... + mnrn) / (m1 + m2 + ... + mn) where m1, m2, ..., mn are the masses of the particles and r1, r2, ..., rn are their respective positions. The center of mass represents the point where the total mass of the system is assumed to be concentrated.
3. How does the conservation of linear momentum apply to systems of particles?
Ans. According to the principle of conservation of linear momentum, the total momentum of a system of particles remains constant if no external force acts on the system. This means that the vector sum of the momenta of all the particles in the system before any interaction is equal to the vector sum of their momenta after the interaction. Mathematically, it can be expressed as: Σpi(initial) = Σpi(final) where Σpi represents the vector sum of the momenta of all the particles, both initial and final. This principle is useful in analyzing collisions and explosions involving multiple particles.
4. What is rotational motion?
Ans. Rotational motion refers to the motion of an object around an axis or a fixed point. Unlike linear motion, which involves the movement of an object along a straight line, rotational motion involves the movement of an object in a circular or curved path. In rotational motion, the object spins or rotates about the axis, and various parameters such as angular displacement, angular velocity, and angular acceleration are used to describe its motion. Examples of rotational motion include the spinning of a top, the rotation of a wheel, and the movement of planets around the sun.
5. How can the moment of inertia of a system of particles be calculated?
Ans. The moment of inertia of a system of particles can be calculated by summing up the individual moments of inertia of all the particles in the system. The moment of inertia of a single particle is given by the formula: I = mr² where m is the mass of the particle and r is the perpendicular distance of the particle from the axis of rotation. To calculate the moment of inertia of a system, the moments of inertia of all the particles are added together, taking into account their masses and respective distances from the axis of rotation. The moment of inertia represents the rotational analog of mass in linear motion and determines how the system resists changes in its rotational motion.
Related Searches

mock tests for examination

,

Objective type Questions

,

Exam

,

Summary

,

Sample Paper

,

Semester Notes

,

Extra Questions

,

NCERT Textbook: Systems of Particles & Rotational Motion | Physics Class 11 - NEET

,

NCERT Textbook: Systems of Particles & Rotational Motion | Physics Class 11 - NEET

,

MCQs

,

study material

,

Important questions

,

practice quizzes

,

Free

,

past year papers

,

video lectures

,

pdf

,

NCERT Textbook: Systems of Particles & Rotational Motion | Physics Class 11 - NEET

,

Viva Questions

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

ppt

;