Page 1
A Theorem Related to z*
? ?
22
11
uv
xy
vu
xy
z z* z z*
z x iy z* x iy x , y
i
x y z z*
u z,z*
u z u z*
x z x z* x
,
??
?
??
??
??
??
??
? ? ? ? ? ?
?
? ? ? ?
?
?
?
? ? ? ? ?
??
C.R.
con
C.R. conditions :
Note that
Make the above substitution for and and treat and
as independent variables :
?
? ?
v z,z*
v z v z*
y z y z* y
u u v v
i
z z* z z*
ii
?
? ? ? ?
??
? ? ? ? ?
?? ? ? ? ?
? ? ?
?
?
??
? ? ?
??
? ? ?
ds.
(1)
If f = f (z,z*) is analytic, then
0
f
z*
?
?
?
(The function cannot really vary with z*, and therefore cannot
really be a function of z* except in a trivial way.)
Page 2
A Theorem Related to z*
? ?
22
11
uv
xy
vu
xy
z z* z z*
z x iy z* x iy x , y
i
x y z z*
u z,z*
u z u z*
x z x z* x
,
??
?
??
??
??
??
??
? ? ? ? ? ?
?
? ? ? ?
?
?
?
? ? ? ? ?
??
C.R.
con
C.R. conditions :
Note that
Make the above substitution for and and treat and
as independent variables :
?
? ?
v z,z*
v z v z*
y z y z* y
u u v v
i
z z* z z*
ii
?
? ? ? ?
??
? ? ? ? ?
?? ? ? ? ?
? ? ?
?
?
??
? ? ?
??
? ? ?
ds.
(1)
If f = f (z,z*) is analytic, then
0
f
z*
?
?
?
(The function cannot really vary with z*, and therefore cannot
really be a function of z* except in a trivial way.)
? ? ? ?
11
v z,z* u z,z*
v z v z* u z u z*
x z x z* x y z y z* y
v v u u
i
z z* z z*
f u v v
ii
z* z* z* z
i
i
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
?? ? ? ? ?
? ? ? ?
??
? ? ? ?
??
? ? ? ?
? ? ? ?
? ? ? ?
?
??
??
?
C.R.
conds.
Similarly,
(2)
Next, consider
?
vu
z* z
??
??
??
??
??
??
v
i
z
?
?
?
from (2)
u
z
?
?
?
0
u
z*
u v f f
* f
i
z* z* z* z*
z
??
?
?
??
?
??
?? ? ? ? ?
? ? ? ? ? ?
??
? ? ?
??
?
?
?
from (1)
is independent of
A Theorem Related to z* (cont.)
Page 3
A Theorem Related to z*
? ?
22
11
uv
xy
vu
xy
z z* z z*
z x iy z* x iy x , y
i
x y z z*
u z,z*
u z u z*
x z x z* x
,
??
?
??
??
??
??
??
? ? ? ? ? ?
?
? ? ? ?
?
?
?
? ? ? ? ?
??
C.R.
con
C.R. conditions :
Note that
Make the above substitution for and and treat and
as independent variables :
?
? ?
v z,z*
v z v z*
y z y z* y
u u v v
i
z z* z z*
ii
?
? ? ? ?
??
? ? ? ? ?
?? ? ? ? ?
? ? ?
?
?
??
? ? ?
??
? ? ?
ds.
(1)
If f = f (z,z*) is analytic, then
0
f
z*
?
?
?
(The function cannot really vary with z*, and therefore cannot
really be a function of z* except in a trivial way.)
? ? ? ?
11
v z,z* u z,z*
v z v z* u z u z*
x z x z* x y z y z* y
v v u u
i
z z* z z*
f u v v
ii
z* z* z* z
i
i
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
?? ? ? ? ?
? ? ? ?
??
? ? ? ?
??
? ? ? ?
? ? ? ?
? ? ? ?
?
??
??
?
C.R.
conds.
Similarly,
(2)
Next, consider
?
vu
z* z
??
??
??
??
??
??
v
i
z
?
?
?
from (2)
u
z
?
?
?
0
u
z*
u v f f
* f
i
z* z* z* z*
z
??
?
?
??
?
??
?? ? ? ? ?
? ? ? ? ? ?
??
? ? ?
??
?
?
?
from (1)
is independent of
A Theorem Related to z* (cont.)
? ?
? ? ? ?
? ?
? ?
2
* 1 0 *
*
sin * cos * 0 2 1 / 2
*
* 0 0
*
*
*
f
f z z z
z
f
f z z z z n
z
f
f z z zz z z
z
z
fz
z
?
?
? ? ?
?
?
? ? ? ? ?
?
?
? ? ? ? ?
?
?
unless
unless
is analytic nowhere, since (not independent of )
is not analytic, since ( )
is not analytic, since ( )
is anal
Examples:
? ?
10
**
f
zz
??
??
??
ytic everywhere, since
A Theorem Related to z* (cont.)
Page 4
A Theorem Related to z*
? ?
22
11
uv
xy
vu
xy
z z* z z*
z x iy z* x iy x , y
i
x y z z*
u z,z*
u z u z*
x z x z* x
,
??
?
??
??
??
??
??
? ? ? ? ? ?
?
? ? ? ?
?
?
?
? ? ? ? ?
??
C.R.
con
C.R. conditions :
Note that
Make the above substitution for and and treat and
as independent variables :
?
? ?
v z,z*
v z v z*
y z y z* y
u u v v
i
z z* z z*
ii
?
? ? ? ?
??
? ? ? ? ?
?? ? ? ? ?
? ? ?
?
?
??
? ? ?
??
? ? ?
ds.
(1)
If f = f (z,z*) is analytic, then
0
f
z*
?
?
?
(The function cannot really vary with z*, and therefore cannot
really be a function of z* except in a trivial way.)
? ? ? ?
11
v z,z* u z,z*
v z v z* u z u z*
x z x z* x y z y z* y
v v u u
i
z z* z z*
f u v v
ii
z* z* z* z
i
i
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
?? ? ? ? ?
? ? ? ?
??
? ? ? ?
??
? ? ? ?
? ? ? ?
? ? ? ?
?
??
??
?
C.R.
conds.
Similarly,
(2)
Next, consider
?
vu
z* z
??
??
??
??
??
??
v
i
z
?
?
?
from (2)
u
z
?
?
?
0
u
z*
u v f f
* f
i
z* z* z* z*
z
??
?
?
??
?
??
?? ? ? ? ?
? ? ? ? ? ?
??
? ? ?
??
?
?
?
from (1)
is independent of
A Theorem Related to z* (cont.)
? ?
? ? ? ?
? ?
? ?
2
* 1 0 *
*
sin * cos * 0 2 1 / 2
*
* 0 0
*
*
*
f
f z z z
z
f
f z z z z n
z
f
f z z zz z z
z
z
fz
z
?
?
? ? ?
?
?
? ? ? ? ?
?
?
? ? ? ? ?
?
?
unless
unless
is analytic nowhere, since (not independent of )
is not analytic, since ( )
is not analytic, since ( )
is anal
Examples:
? ?
10
**
f
zz
??
??
??
ytic everywhere, since
A Theorem Related to z* (cont.)
Entire Functions
12
22
2 3 4 5
1
sin cos sinh cosh
11
, tan
1
/
n
z
, z, z , z , z ,z , ,z ,
e , z, z, z, z
, z ,
zz ?
Typical functionsthat are entire
(analytic everywhere in the finite complex plane):
Typical functions analytic everywhere : almost
cot tanh coth z, z, z, z
A function that is analytic everywhere in the finite*
complex plane is called “entire”.
* A function is said to be analytic everywhere in the finite complex plane if
it is analytic everywhere except possibly at infinity.
1 w / z ? Let Analytic at infinity: Is the function analytic at w = 0?
Page 5
A Theorem Related to z*
? ?
22
11
uv
xy
vu
xy
z z* z z*
z x iy z* x iy x , y
i
x y z z*
u z,z*
u z u z*
x z x z* x
,
??
?
??
??
??
??
??
? ? ? ? ? ?
?
? ? ? ?
?
?
?
? ? ? ? ?
??
C.R.
con
C.R. conditions :
Note that
Make the above substitution for and and treat and
as independent variables :
?
? ?
v z,z*
v z v z*
y z y z* y
u u v v
i
z z* z z*
ii
?
? ? ? ?
??
? ? ? ? ?
?? ? ? ? ?
? ? ?
?
?
??
? ? ?
??
? ? ?
ds.
(1)
If f = f (z,z*) is analytic, then
0
f
z*
?
?
?
(The function cannot really vary with z*, and therefore cannot
really be a function of z* except in a trivial way.)
? ? ? ?
11
v z,z* u z,z*
v z v z* u z u z*
x z x z* x y z y z* y
v v u u
i
z z* z z*
f u v v
ii
z* z* z* z
i
i
??
? ? ? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
?? ? ? ? ?
? ? ? ?
??
? ? ? ?
??
? ? ? ?
? ? ? ?
? ? ? ?
?
??
??
?
C.R.
conds.
Similarly,
(2)
Next, consider
?
vu
z* z
??
??
??
??
??
??
v
i
z
?
?
?
from (2)
u
z
?
?
?
0
u
z*
u v f f
* f
i
z* z* z* z*
z
??
?
?
??
?
??
?? ? ? ? ?
? ? ? ? ? ?
??
? ? ?
??
?
?
?
from (1)
is independent of
A Theorem Related to z* (cont.)
? ?
? ? ? ?
? ?
? ?
2
* 1 0 *
*
sin * cos * 0 2 1 / 2
*
* 0 0
*
*
*
f
f z z z
z
f
f z z z z n
z
f
f z z zz z z
z
z
fz
z
?
?
? ? ?
?
?
? ? ? ? ?
?
?
? ? ? ? ?
?
?
unless
unless
is analytic nowhere, since (not independent of )
is not analytic, since ( )
is not analytic, since ( )
is anal
Examples:
? ?
10
**
f
zz
??
??
??
ytic everywhere, since
A Theorem Related to z* (cont.)
Entire Functions
12
22
2 3 4 5
1
sin cos sinh cosh
11
, tan
1
/
n
z
, z, z , z , z ,z , ,z ,
e , z, z, z, z
, z ,
zz ?
Typical functionsthat are entire
(analytic everywhere in the finite complex plane):
Typical functions analytic everywhere : almost
cot tanh coth z, z, z, z
A function that is analytic everywhere in the finite*
complex plane is called “entire”.
* A function is said to be analytic everywhere in the finite complex plane if
it is analytic everywhere except possibly at infinity.
1 w / z ? Let Analytic at infinity: Is the function analytic at w = 0?
Combinations of Analytic Functions
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ? ? ?
f z ,g z ,h z
a f z b g z c h z
f z ,g z
f g z
? ?
?
?
of analytic functions are analytic :
are analytic
is analytic
of analytic functions are analytic :
are analytic
is analy
If
If
Finite linear combinations
Composite combinations
tic
Combinations of functions:
Read More