Courses

# PPT: Thermodynamic Relations Mechanical Engineering Notes | EduRev

## Mechanical Engineering : PPT: Thermodynamic Relations Mechanical Engineering Notes | EduRev

``` Page 1

Thermodynamic Relations
Page 2

Thermodynamic Relations
Some Mathematical Theorem
• Theorem 1- If the relation exists among relations x, y and z, then z may be
expressed as a function of x and y.
Where
Where z, M and N are functions of x and y. Differentiating M partially with respect to y ,
and N with respect to x.
The order of differentiation is immaterial for properties since they are continuous point
functions and have exact differentials. Therefore, the two relations above are identical:
This is the condition of exact differential.
In thermodynamics, this relation forms the basis for
the development of the Maxwell relations discussed
in the next section.
Page 3

Thermodynamic Relations
Some Mathematical Theorem
• Theorem 1- If the relation exists among relations x, y and z, then z may be
expressed as a function of x and y.
Where
Where z, M and N are functions of x and y. Differentiating M partially with respect to y ,
and N with respect to x.
The order of differentiation is immaterial for properties since they are continuous point
functions and have exact differentials. Therefore, the two relations above are identical:
This is the condition of exact differential.
In thermodynamics, this relation forms the basis for
the development of the Maxwell relations discussed
in the next section.
THE MAXWELL RELATIONS
• The equations that relate the partial derivatives of properties P , v, T,
and s of a simple compressible system to each other are called the
Maxwell relations.
Since U,H ,F and G are thermodynamics properties
and exact differential of the type
dz = Mdx + Ndy, then
Page 4

Thermodynamic Relations
Some Mathematical Theorem
• Theorem 1- If the relation exists among relations x, y and z, then z may be
expressed as a function of x and y.
Where
Where z, M and N are functions of x and y. Differentiating M partially with respect to y ,
and N with respect to x.
The order of differentiation is immaterial for properties since they are continuous point
functions and have exact differentials. Therefore, the two relations above are identical:
This is the condition of exact differential.
In thermodynamics, this relation forms the basis for
the development of the Maxwell relations discussed
in the next section.
THE MAXWELL RELATIONS
• The equations that relate the partial derivatives of properties P , v, T,
and s of a simple compressible system to each other are called the
Maxwell relations.
Since U,H ,F and G are thermodynamics properties
and exact differential of the type
dz = Mdx + Ndy, then
Helmholtz and Gibbs Function
• The Gibbs free energy or Gibbs function is a thermodynamic function of a
certain system , it is equal to the enthalpy H of the system minus the
product of the entropy S of this system and its thermodynamic
temperature T .
Page 5

Thermodynamic Relations
Some Mathematical Theorem
• Theorem 1- If the relation exists among relations x, y and z, then z may be
expressed as a function of x and y.
Where
Where z, M and N are functions of x and y. Differentiating M partially with respect to y ,
and N with respect to x.
The order of differentiation is immaterial for properties since they are continuous point
functions and have exact differentials. Therefore, the two relations above are identical:
This is the condition of exact differential.
In thermodynamics, this relation forms the basis for
the development of the Maxwell relations discussed
in the next section.
THE MAXWELL RELATIONS
• The equations that relate the partial derivatives of properties P , v, T,
and s of a simple compressible system to each other are called the
Maxwell relations.
Since U,H ,F and G are thermodynamics properties
and exact differential of the type
dz = Mdx + Ndy, then
Helmholtz and Gibbs Function
• The Gibbs free energy or Gibbs function is a thermodynamic function of a
certain system , it is equal to the enthalpy H of the system minus the
product of the entropy S of this system and its thermodynamic
temperature T .
Helmholtz and Gibbs Function
• The Helmholtz free energy or Helmholtz function is a thermodynamic
function of a certain system equal to internal energy U of the system
minus the the entropy S of this system multiplied by its thermodynamic
temperature T .
```
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

## Thermodynamics

33 videos|52 docs|36 tests

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

;