Chemistry Exam  >  Chemistry Notes  >  Physical Chemistry  >  Points to Remember: Chemical Kinetics

Points to Remember: Chemical Kinetics | Physical Chemistry PDF Download

Points to be Remembered

1. Determination of Order from Rate Constant: The order of a reaction can be determined from the unit of the rate constant.
We know that: dC/dt = kCn .......... (1)
where, C = Concentration of reactant, k = rate constant and n = order of the reaction
or, dC/Cn = k.dt or, C(1-n).t-1 = k ............(2)
For, zero order reaction i.e. n = 0, the unit of rate constant will be : C(1-0).t-1 = M .sec-1
For first order reaction i.e. n = 1, the unit of the rate constant will be : C(1-1).t-1 = sec-1 For second order reaction i.e. n = 2, the unit of the rate constant will be : C(1-2).t-1 = M-1.sec-1
For third order reaction i.e. n = 3, the unit of the rate constant will be : C(1-3).t-1 = M-2.sec-1
2. Factors Affecting the Rate of a Reaction: The following factors influences the rate of a reaction.
I. Concentration of Reactant: Reactant concentration has a vital role on the rate of a chemical reaction. Greater is the reactant concentration in a chemical reaction, higher will be the no. of molecules available per unit volume for collision. Hence, greater will be the no. of collisions. Hence, the rate of the reaction will be increased.
II. Nature of Reactants and Products: Rate of a reaction is largely dependent on the nature of reactants and products. Depending upon the bonds breaking and formation of reactants and products, some reaction occurs at a faster rate while some occurs at a slower rate.
III. Temperature: Temperature greatly influenced the rate of a chemical reaction. Higher is the temperature, greater will be the collisions resulting the reaction to occur at a faster rate. It is observed that the reaction rate become doubles per 10° rise in temperature.
IV. Surface Area of Solid Reactants: For a heterogeneous reaction, greater is the surface area of solid reactant, more no. of molecules will get attach to the surface of the reactant. Hence, greater no. of collision will occur. Hence, the reaction rate will be increased.
V. Effect of Catalyst: Rate of a chemical reaction is highly affected by the catalyst. Catalyst always provides an alternative pathway which involves lower activation energy for the reaction to occur. Hence, the reaction rate will be increased.
3. Difference Between Order and Molecularity:
1. Order may be positive, negative, zero or, even fractional but molecularity must be positive integer.
2. Order may be affected by the temperature, pressure, concentration of reactants but molecularity remains unaffected by these factors.
3. Order is an experimentally determined quantity while molecularity is a theoretical concept.
4. Zero Order Reaction:
A. Integrated Rate Law:
Let us consider the following zero order reaction : Let a M be the initial concentration of the reactant. After a certain time t, if x M be the concentration of product then (a-x) M be the concentration of reactant after time t.
A ---> pdt
t = 0 a 0
t = t (a-x) x
Rate = -d(a-x)/dt = k(a-x)° or, dx/dt = k
or, dx = k.dt
on integration, we have:
Points to Remember: Chemical Kinetics | Physical Chemistry
or, x = kt
This is the integrated rate equation for a zero order reaction.
B. Half-life of Zero Order Reaction: The integrated rate equation for a zero order reaction is: x = kt ..........(3)
When t = t1/2, x = a/2.
Putting these values into the equation (3), we have:
a/2 = kt1/2 or, t1/2 = a/2k or, t1/2 ∝ a
Hence, the half-life of a zero order reaction is directly proportional to the first power of the initial concentration of reactant.
C. Completion of Zero Order Reaction: The integrated rate equation for a zero order reaction is:
x = kt or, (a-x) = a-kt ....... (4)
When t = tcom, (a-x) = 0. Putting these values into the equation (4), we have:
0 = a-ktcom or, a ktcom or, tcom = a/k
Hence, a zero order reaction goes to completion.
D. Graphical Plots:
I. [Reactant] vs. t: The integrated rate equation for a zero order reaction is:
x = kt or, (a-x) = a-kt ....... (5)
Hence, a plot of (a-x) vs. t will be a straight line with negative slope = k and the Y-axis intercept a.
Points to Remember: Chemical Kinetics | Physical ChemistryII. [Product]vs. t: The integrated rate equation for a zero order reaction is:
x = kt ....... (5)
Hence, a plot of a vs. t will be a straight line passing through the origin with positive slope = k.
Points to Remember: Chemical Kinetics | Physical Chemistry

E. Characteristics of a Zero Order Reaction: Some important characteristics of a zero order reaction are:
I. The unit of the rate constant of a zero order reaction is M.sec-1.
II. The integrated rate equation of a zero order reaction is: x = kt.
III. A zero order reaction goes to completion in a finite time.
IV. The half-life of a zero order reaction is dependent on the initial concentration of reactant.
V. A plot of [R] vs. t will be a straight line with negative slope k and Y-axis intercept a while a plot of [P] vs. t will be a straight line passing through the origin with positive slope k.

5. First Order Reaction:
A. Integrated Rate Law: Let us consider the following first order reaction : Let a M be the initial concentration of the reactant. After a certain time t, if x M be the concentration of product then (a-x) M be the concentration of reactant after time t.
A ----> pdt
t = 0 a 0
t = t (a-x) x
Rate = -d(a-x)/dt = k(a-x)1 or, dx/dt = k(a-x)
or, dx/(a-x) = k.dt
on integration, we have:
Points to Remember: Chemical Kinetics | Physical Chemistry
or, ln[a/(a-x)] = kt
This is the integrated rate equation for a first order reaction.
B. Half-life of First Order Reaction: The integrated rate equation for a first order reaction is:
ln[a/(a-x)] = kt ......... (6)
When t = t1/2 , x = a/2.
Putting these values into the equation (6), we have:
ln2 = kt1/2 or, t1/2 = 0.693/k or, t1/2 ∝ a°
Hence, the half-life of a first order reaction is independent on the initial concentration of reactant.
C. Completion of First Order Reaction: The integrated rate equation for a first order reaction is:
ln[a/(a-x)] = kt or, ln[(a-x)/a] = -kt or, [(a-x)/a] = e-kt or, (a-x) = a.e-kt ....... (7)
When t = tcom, (a-x) = 0.
Putting these values into the equation (7), we have:
0 = ae-ktcom or, tcom = ∞
Hence, a first order reaction never goes to completion.
D. Graphical Plots:
I. ln[a/(a-x)] vs. t: The integrated rate equation for a first order reaction is:
ln[a/(a-x)] = kt ......... (8)
Hence, a plot of ln[a/(a-x)] vs. t will be a straight line passing through the origin with positive slope = k.
Points to Remember: Chemical Kinetics | Physical ChemistryE. Characteristics of a First Order Reaction: Some important characteristics of a first order reaction are:
1. The unit of the rate constant of a first order reaction is sec-1.
2. The integrated rate equation of a first order reaction is: ln[a/(a-x)] = kt.
3. A first order reaction never goes to completion.
4. The half-life of a first order reaction is independent on the initial concentration of reactant.
5. A plot of ln[a/(a-x)] vs. t will be a straight line passing through the origin with positive slope k.
6. n-th Order Reaction:
A. Integrated Rate Law: Let us consider the following n-th order reaction : Let a M be the initial concentration of the reactant. After a certain time t, if x M be the concentration of product then (a-x) M be the concentration of reactant after time t.
A -> pdt
t = 0 a 0
t = t (a-x) x
Rate = -d(a-x)/dt = k(a-x)n or, dx/dt = k(a-x)n or, dx/(a-x)n = k.dt
on integration, we have:
Points to Remember: Chemical Kinetics | Physical Chemistry
or, 1/(n - 1)[(a-x)1-n - a1-n] = kt
B. Half-life of n-th Order Reaction: The integrated rate equation for n-th order reaction is:
1/(n - 1) [(a - x)1-n - a1-n] = kt ........ (9)
When t = t1/2, x = a/2.
Putting these values into the equation (9), we have:
1/(n-1)[(a-a/2)1-n - a1-n] = kt1/2 or, 1/(n-1)[(a/2)1-n - a1/n] = kt1/2
or, 1/(n-1).a1-n[2n-1 -1] = kt1/2
or, t1/2 ∝ a1-n
C. Limitation: This rate law is not applicable for first order reaction.
7. Pseudo First Order Reaction: Let us consider the hydrolysis of sucrose in acidic medium.
Points to Remember: Chemical Kinetics | Physical Chemistry
Rate = k[Sucrose][H2O][H+]
As H+ acts as catalyst, it will not appear in the rate equation.
Hence, rate = k'[Sucrose][H2O]
Here, water is present in excess. Hence, it will not affect the rate of the reaction.

Hence, rate = k''[Sucrose] ; k" = k'[H20 ]
At first sight, it is seemed the reaction is first order with respect to sucrose and the reaction is also first order with respect to water, But, as water is present in excess, rate will be independent on the concentration of water. That's why the overall order of the reaction will be first. Hence, it is called pseudo first order reaction.
8. Some Important Formulas:
1. C(1-n).t-1 = k - used to find out the order of a reaction from the unit of rate constant.
2. The integrated rate equation for a first order reaction is: ln[a/(a-x)] = kt
3. The half-life for a first order reaction is: t1/2 = 0.693/k
4. The integrated rate equation for n-th order reaction is: 1/(n - 1)[(a- x)1-n - a1-n] = kt
5. The half-life for a n-th order reaction is: t1/2 = 1/(n-1)k.a1-n[2n-1-1]
6. The Arrhenius equation is: k = A.e'[Ea/RT]
7. ln(k2/k1) = Ea/R.[1/T1 - 1/T2] - used to determine the activation energy of a reaction having two different rate constants at two different temperatures.
8. Rate of the homogeneous catalytic reaction: r = d[P]/dt
9. The turnover frequency (TOF) = r/Q = Rate/[Catalyst]
10. The order of a reaction is related to half-life time and concentrations of reactants through the following equation: n = 1 + log[(t1/22/t1/2]1/log(a01/a02)].
11. Lineweaver-Burk equation is : 1/v = (l/vmax) + (Km/ vmax).(1/[S]0) ......... (1)
12. Turnover no. = Vmax/[E]o
13. Catalytic efficiency = kcat/KM

The document Points to Remember: Chemical Kinetics | Physical Chemistry is a part of the Chemistry Course Physical Chemistry.
All you need of Chemistry at this link: Chemistry
83 videos|142 docs|67 tests

FAQs on Points to Remember: Chemical Kinetics - Physical Chemistry

1. What is chemical kinetics?
Ans. Chemical kinetics is the branch of chemistry that studies the rates of chemical reactions and the factors that influence them. It involves analyzing how the concentration of reactants changes over time and the speed at which products are formed.
2. What are the factors that affect the rate of a chemical reaction?
Ans. Several factors can influence the rate of a chemical reaction. These include temperature, concentration of reactants, surface area, catalysts, and the presence of inhibitors. Increasing the temperature, concentration, and surface area, as well as using catalysts, generally increase the reaction rate, while inhibitors decrease it.
3. How does temperature affect the rate of a chemical reaction?
Ans. Temperature has a significant impact on the rate of a chemical reaction. As temperature increases, the average kinetic energy of molecules also increases. This leads to more frequent and energetic collisions between reactant molecules, increasing the reaction rate. According to the Arrhenius equation, the rate of a reaction generally doubles for every 10-degree Celsius increase in temperature.
4. What is a catalyst and how does it affect the rate of a chemical reaction?
Ans. A catalyst is a substance that speeds up a chemical reaction without being consumed in the process. It lowers the activation energy required for the reaction to occur, allowing more reactant molecules to possess the necessary energy to overcome the energy barrier. This results in an increased reaction rate. Catalysts provide an alternative reaction pathway with lower energy requirements.
5. How can reaction rates be determined experimentally?
Ans. Reaction rates can be determined experimentally by measuring the change in concentration of reactants or products over time. This can be done by monitoring changes in color, pH, pressure, or using techniques such as spectrophotometry. By analyzing how the concentration changes at different time intervals, the rate of the reaction can be calculated.
83 videos|142 docs|67 tests
Download as PDF
Explore Courses for Chemistry exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

Points to Remember: Chemical Kinetics | Physical Chemistry

,

Exam

,

Summary

,

Extra Questions

,

Viva Questions

,

Objective type Questions

,

Points to Remember: Chemical Kinetics | Physical Chemistry

,

video lectures

,

Sample Paper

,

Semester Notes

,

past year papers

,

ppt

,

Points to Remember: Chemical Kinetics | Physical Chemistry

,

Important questions

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

mock tests for examination

,

study material

,

Free

,

practice quizzes

,

MCQs

;