Class 7 Exam  >  Class 7 Notes  >  RD Sharma Solutions for Class 7 Mathematics  >  RD Sharma Solutions (Part - 3) - Ex - 7.2, Algebraic Expressions, Class 7, Math

RD Sharma Solutions (Part - 3) - Ex - 7.2, Algebraic Expressions, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics PDF Download

QUESTION 14:

From the sum of 3x2 − 5x + 2 and −5x2 − 8x + 9 subtract 4x2 − 7x + 9.

ANSWER 14:

Required expression = {(3x2 - 5x + 2) + (- 5x2 - 8x + 9)} - (4x2 - 7x + 9)
                                  = {3x2 - 5x + 2 - 5x2 - 8x + 9} -  (4x2 - 7x + 9)
                                  = {3x2 - 5x2 - 5x - 8x + 2 + 9} -  (4x2 - 7x + 9)
                                  = {- 2x2 - 13x +11} - (4x2 - 7x + 9)
                                  = - 2x2 - 13x + 11 - 4x2 + 7x - 9
                                  = - 2x2 - 4x2 - 13x + 7x + 11 - 9
                                  = - 6x2 - 6x + 2

QUESTION 15:

Subtract the sum of 13x − 4y + 7z and −6z + 6x + 3y from the sum of 6x − 4y − 4z and 2x + 4y − 7.

ANSWER 15:

Sum of (13x - 4y + 7z) and ( - 6z + 6x + 3y)
= {(13x - 4y + 7z) + (- 6z + 6x + 3y)
={13x - 4y + 7z - 6z + 6x + 3y}
= {13x + 6x - 4y + 3y + 7z - 6z}
= 19x - y + z

Sum of (6x − 4y − 4z) and (2x + 4y − 7)
= (6x − 4y − 4z) + (2x + 4y − 7)
= 6x − 4y − 4z + 2x + 4y − 7
= 8x - 4z - 7

Now, required expression = {(8x - 4z - 7) - (19x - y + z)}
                                  = 8x - 4z - 7 - 19x + y - z
                                  = 8x - 19x + y - 4z - z - 7
                                  = - 11x + y - 5z - 7

QUESTION 16:

From the sum of x2 + 3y2 − 6xy, 2x2 − y2 + 8xyy2 + 8 and x2 − 3xy subtract −3x2 + 4y2 − xyx − y + 3.

ANSWER 16:

Sum of (x2 + 3y2 - 6xy), (2x2 - y2 + 8xy), (y2 + 8) and (x2 - 3xy)
={(x2 + 3y2 - 6xy) + (2x2 - y2 + 8xy) + ( y2 + 8) + (x2 - 3xy)}
={x2 + 3y2 - 6xy + 2x2 - y2 + 8xy + y2 + 8 + x2 - 3xy}
= {x2+ 2x2+ x2 + 3y2- y2 + y2- 6xy + 8xy - 3xy + 8}
= 4x2 + 3y2 - xy + 8

Now, required expression = (4x2 + 3y2 - xy + 8) - (- 3x2 + 4y2 - xy + x - y + 3)
                                  = 4x2 + 3y2 - xy + 8 + 3x2 - 4y2 + xy - x + y - 3
                                  = 4x2 + 3x2+ 3y2- 4y2- x + y - 3 + 8
                                  = 7x2 - y2- x + y + 5

QUESTION 17:

What should be added to xy − 3yz + 4zx to get 4xy − 3zx + 4yz + 7?

ANSWER 17:

The required expression can be got by subtracting xy - 3yz + 4zx from 4xy - 3zx + 4yz + 7.
Therefore, required expression = (4xy - 3zx + 4yz + 7) - (xy - 3yz + 4zx)
                                  = 4xy - 3zx + 4yz + 7 - xy + 3yz - 4zx
                                  = 4xy - xy - 3zx - 4zx + 4yz + 3yz + 7
                                  = 3xy - 7zx + 7yz + 7


QUESTION 18:

What should be subtracted from x2xy + y2x + y + 3 to obtain −x2 + 3y2 − 4xy + 1?

ANSWER 18:

Let 'M' be the required expression. Then, we have
x2 - xy + y2 - x + y + 3 - M = - x2 + 3y2 - 4xy + 1
Therefore,
M = (x2 - xy + y2 - x + y + 3) - (- x2 + 3y2 - 4xy + 1)
    = x2 - xy + y2 - x + y + 3 + x2 - 3y2 + 4xy - 1
Collecting positive and negative like terms together, we get
x2 + x2- xy + 4xy + y2- 3y2 - x + y + 3 - 1
= 2x2 + 3xy- 2y2- x + y + 2


QUESTION 19:

How much is x − 2y + 3z greater than 3x + 5y − 7?

ANSWER 19:

Required expression  = (x - 2y + 3z) - (3x + 5y - 7)
                                   =  x - 2y + 3z - 3x - 5y + 7
Collecting positive and negative like terms together, we get
x - 3x - 2y - 5y + 3z + 7
= - 2x - 7y + 3z + 7


QUESTION 20:

How much is x2 − 2xy + 3y2 less than 2x2 − 3y2 + xy?

ANSWER 20:

Required expression = (2x2 - 3y2 + xy) - (x2 - 2xy + 3y2)
                                  = 2x2 - 3y2 + xy - x2 + 2xy - 3y2
Collecting positive and negative like terms together, we get
2x2 - x2 - 3y2 - 3y2 + xy + 2xy
 = x2 - 6y2 + 3xy


QUESTION 21:

How much does a2 − 3ab + 2b2 exceed 2a2 − 7ab + 9b2?

ANSWER 21:

Required expression = (a2 - 3ab + 2b2) - (2a2 - 7ab + 9b2)
                                  = a2 - 3ab + 2b2 - 2a2 + 7ab - 9b2
Collecting positive and negative like terms together, we get
                                  =  a- 2a2  - 3ab + 7ab  + 2b2 -  9b2 
                                  = - a2 + 4ab - 7b2


QUESTION 22:

What must be added to 12x3 − 4x2 + 3x − 7 to make the sum x3 + 2x2 − 3x + 2?

ANSWER 22:

Let 'M' be the required expression. Thus, we have
12x3 - 4x2 + 3x - 7 + M = x3 + 2x2 - 3x + 2
Therefore,
M = (x3 + 2x2 - 3x + 2) - (12x3 - 4x2 + 3x - 7)
    =  x3 + 2x2 - 3x + 2 - 12x3 + 4x2 - 3x + 7
Collecting positive and negative like terms together, we get
x3- 12x3 + 2x2 + 4x2 - 3x - 3x + 2 + 7
= - 11x3 + 6x2 - 6x + 9


QUESTION 23:

If P = 7x2 + 5xy − 9y2, Q = 4y2 − 3x2 − 6xy and R = −4x2 + xy + 5y2, show that P + Q + R = 0.

ANSWER 23:

We have
P + Q + R = (7x2 + 5xy - 9y2) + (4y2 - 3x2 - 6xy) + (- 4x2 + xy + 5y2)
                 = 7x2 + 5xy - 9y2 + 4y2 - 3x2 - 6xy - 4x2 + xy + 5y2
Collecting positive and negative like terms together, we get
7x2- 3x2 - 4x+ 5xy - 6xy + xy - 9y2 + 4y2 + 5y2
= 7x2- 7x+ 6xy - 6xy  - 9y2 + 9y
= 0


QUESTION 24:

If P = a2b2 + 2ab, Q = a2 + 4b2 − 6ab, R = b2 + b, S = a2 − 4ab and T = −2a2 + b2ab + a. Find P + Q + R + S − T.

ANSWER 24:

 We have
P + Q + R + S - T = {(a2 - b2 + 2ab) + (a2 + 4b2 - 6ab) + (b2 + b) + (a2 - 4ab)} - (-2a2 + b2 - ab + a)
                             = {a2 - b2 + 2ab + a2 + 4b2 - 6ab + b2 + b + a2 - 4ab}- (- 2a2 + b2 - ab + a)
                             = {3a2 + 4b2 - 8ab + b } - (-2a2 + b2 - ab + a)
                             = 3a2+ 4b2 - 8ab + b + 2a2 - b2 + ab - a
Collecting positive and negative like terms together, we get
3a2 + 2a2 + 4b2 - b2 - 8ab + ab - a + b
= 5a2 + 3b2- 7ab - a + b

The document RD Sharma Solutions (Part - 3) - Ex - 7.2, Algebraic Expressions, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics is a part of the Class 7 Course RD Sharma Solutions for Class 7 Mathematics.
All you need of Class 7 at this link: Class 7
97 docs

Top Courses for Class 7

FAQs on RD Sharma Solutions (Part - 3) - Ex - 7.2, Algebraic Expressions, Class 7, Math - RD Sharma Solutions for Class 7 Mathematics

1. What is the importance of algebraic expressions in mathematics?
Ans. Algebraic expressions are important in mathematics as they help in solving real-life problems, simplifying complex calculations, and representing relationships between variables. They provide a concise and standardized way to express mathematical equations and formulas.
2. How do you simplify algebraic expressions?
Ans. To simplify algebraic expressions, you need to combine like terms by adding or subtracting them. You also need to apply the rules of exponents and operations such as multiplication, division, and parentheses. By simplifying expressions, you can make them easier to work with and solve equations more efficiently.
3. What are the different types of algebraic expressions?
Ans. There are several types of algebraic expressions, including monomials, binomials, trinomials, and polynomials. A monomial is an expression with only one term, a binomial has two terms, a trinomial has three terms, and a polynomial has more than three terms. Each type of expression has its own properties and methods of simplification.
4. How can algebraic expressions be used in the real world?
Ans. Algebraic expressions can be used in various real-world situations, such as calculating profit or loss in business, determining the cost of a product based on the quantity, solving problems related to distance, speed, and time, analyzing patterns in data, and modeling physical phenomena. They provide a mathematical framework to solve practical problems and make predictions.
5. What are some common mistakes to avoid when working with algebraic expressions?
Ans. Some common mistakes to avoid when working with algebraic expressions include forgetting to apply the order of operations, misplacing negative signs, not simplifying expressions fully, incorrectly distributing terms, and making errors in combining like terms. It is important to double-check each step and be careful with signs and arithmetic operations to avoid these mistakes.
Explore Courses for Class 7 exam

Top Courses for Class 7

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

shortcuts and tricks

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Free

,

MCQs

,

Viva Questions

,

pdf

,

study material

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Important questions

,

practice quizzes

,

RD Sharma Solutions (Part - 3) - Ex - 7.2

,

video lectures

,

Exam

,

Semester Notes

,

Class 7

,

Objective type Questions

,

RD Sharma Solutions (Part - 3) - Ex - 7.2

,

Previous Year Questions with Solutions

,

Summary

,

Sample Paper

,

Algebraic Expressions

,

Extra Questions

,

past year papers

,

mock tests for examination

,

Class 7

,

RD Sharma Solutions (Part - 3) - Ex - 7.2

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Algebraic Expressions

,

Algebraic Expressions

,

Class 7

,

ppt

;