1. I.U.P.A.C. Nomenclature:
The following points should be remembered during I.U.P.A.C. (International Union of Pure and Applied Chemistry) nomenclature of an organic compound.
2. Priority Table of Functional Group :
(Priority decrease down the group)
3. R/S Nomenclature:
4. Dipole moment is expressed as the product of charge separation and distance i.e. μ = e x d.
5. The unit of dipole moment is Debye. 1 Debye = 10-18 e.s.u. cm.
6. If the group moments of some of the groups are exactly equal and opposite to the group moments of the rest groups, the molecule will be non-polar.
But, if the group moments of some of the groups are not exactly equal and opposite to the group moments of the rest groups, the molecule will be polar.
7. If μ1 and μ2 are the bond moments of two bonds with an angle of separation of θ, the resultant dipole moment will be : μres = √[μ12 + μ22 + 2μ1μ2Cos0]
8. Rules for determining Hybridization of an atom
9. For showing tautomerization, the presence of at least one acidic ∝-H is the necessary condition.
10. In general, the keto form is energetically more stable than the enol form. But, the % of enol form can be higher than the % of keto form due to the mainly following two reasons :
11. Boiling point/Melting point of a compound depends on the intermolecular force present in the compound. Greater is the intermolecular force of the compound, higher will be the B.P./M.P. Intermolecular force in turn depends on the effective molecular weight of the compound.
12. Intermolecular Forces : The strength of various types of intermolecular force : Ionic force > Ion-Dipole force > H-bonding > Keesom force > Debye force > London force.
(b) Conditions : The two basic conditions for stronger H-bonding are :
13. SN2 Reaction:
14. SN1 Reaction :
15. Inductive effect arises due the difference in electronegativity between the bonded atoms. Its effect decreases as the distance from the source increases. It is a permanent effect. It can be of two types - Electron donating inductive effect (+1 effect) and Electron withdrawing inductive effect (-1 effect). Many phenomena such as stability of reactive intermediates, acidity-basicity etc. can be explained by this effect.
16. Rules for finding out the most stable resonating structure
17. Functional Group List :
18. Carbocations are electron deficient species. Hence, any factor (Inductive, Hyperconjugative or, Mesomeric) that will increase the electron density on the carbocationic carbon will increase the stability of the carbocation. Mostly these are sp2 hybridized species. Sometimes these may also be sp hybridized also.
19. Carbanions are electron rich species. Hence, any factor (Inductive or, Mesomeric) that will decrease the electron density on the carbanionic carbon will increase the stability of the carbanion. Mostly these are sp2 hybridized species. Sometimes these may also be sp/sp3 hybridized.
20. Radicals are odd electron species. These are stabilised by both the electron donating as well as electron withdrawing groups. Mostly these are sp2 hybridized species. These may also be sp3 hybridized.
21. According to Huckel a system will be aromatic if it is cyclic, planar, fully-conjugated and contains (4n+2)π e" [n = 0 , 1 , 2 ....]. Similarly, a system will be antiaromatic if it is cyclic, planar, fully-conjugated and contains 4nπ e- [n = 1, 2 ....]. But, if a species does not maintain any of the first three conditions, it will be non-aromatic.
22. Stability order of aromatic, non-aromatic and antiaromatic species are : Aromatic > Non-aromatic > Anti-aromatic.
23. Acidity of a compound depends on the stability of the conjugate base. Greater is the stability of the conjugate base, higher will be the acidity of the compound. As conjugate base is anionic in nature, EWG will increase the acidity of an acid while EDG will decrease the acidity of the acid.
24. Basicity of a nitrogenous compound depends on the availability of lone pair on nitrogen atom. Greater is the availability of lone pair on nitrogen atom, higher will be the basicity. Any EDG will increase electron density on nitrogen atom and thereby increase basicity while any EWG will decrease the electron density on nitrogen atom and thereby decrease basicity.
35 videos|92 docs|46 tests
|
1. What are the basic concepts of organic chemistry? |
2. Why is organic chemistry important? |
3. How do you name organic compounds? |
4. What are functional groups in organic chemistry? |
5. What are some common organic reactions? |
|
Explore Courses for Chemistry exam
|