Download, print and study this document offline |
Page 1 1. (a) Initial angular momentum of ring. L = Iw =Mr 2 w Final angular momentum of ring and four particles system ( ) 2 2 2' M Mr Mr 4mr M 4m w w= + w= + 2. (b) The angular momontum of a system of particles is con served when no external torque acts on the system. 3. (c) Rotational kinetic energy 2 L E L 2EI 2l \= A AA B BB L EI 1 1005 L EI4 Þ = ´ = ´= 4. (c) Angular momentum L = Iw constant \ I increases and w decreases 5. (c) Conservation of angular momentum I 1 w 1 +I 2 w 2 = (I 1 w 1 +I 2 ) w Angular velocity of system 1 1 22 12 II II w+w w= + \ Rotational kinetic energy = ( ) 2 12 1 II 2 +w ( ) ( ) ( ) 2 2 1 1 22 1 1 22 12 12 12 II II 1 II 2 II 2II w+w æö w+w =+= ç÷ + + èø 6. (d) Kinetic energy 11 E L L 2n 22 = w= ´p 2 21 1 12 L En E Ln L En \¥´Þ =´ 21 12 2 1 11 LE/2nLL L L E 2n 44 é ùéù = ´ Þ == ê úêú ë ûëû 7. (b) 2 L E 2I = . If boy stretches hgis arm then moment of inertia increases and accordingly kinetic energy of the system decreases because L = constant and 1 E I ¥ 8. (c)According to conservation of angular momentum ( ) 1 11 22 1 1 2 22 12 I I I I II II w \w = w Þ w= + w Þw= + 9. (a) 7 32 L 2EI 2 10 8 10 4 10 kg m / s -- = = ´ ´ ´ =´ 10. (d) Angular momentum, of earth about its axis of rotation, 2 2 2 2 4 MR L l MR 5 T 5T pp =w= ´= 11. (d) Angular momentum, L = mvr = 22 2 mrmr T p w = ´´ = ( ) 2 24 11 402 7 2 3.14 6 10 1.5 10 2.7 10 kg m / s 3.14 10 ´ ´´ ´´ =´- ´ 12. (c) 2 1800 2 60 60 ´ === n p wpp rad/s =´ P tw Þ 3 100 10 531 60 P Nm ´ == =- t wp 13. (a) 0 00 21 43 44 A AA LL dL dtt - - t== == D ur r 14. (c) 21 60 20 2() 60 60 æö - ç÷ èø - == nn t p p a 2 60 30 -- == pp rad / sec 2 \t=a I = 2 30 ´p = 15 Nm p - 15. (a) $ $ $ $ (7 3 ) ( 3 5) r f i j k i jk r r ur $$ t= ´ = + + ´- ++ $ $ 7 31 3 15 = - $ r i jk t $ $ (15 1) (35 3) (7 9) = - - + ++ $ i jk $$ 14 38 16 i jk = -+ $ 16. (a) 2 1000 5 ad / sec 200 r I t a=== From 0 0 5 3 15 = + = + ´= t w wa rad/s 17. (a) 2 30 15 rad/s 2 = == I t a Q 2 0 1 2 q=w +a tt Page 2 1. (a) Initial angular momentum of ring. L = Iw =Mr 2 w Final angular momentum of ring and four particles system ( ) 2 2 2' M Mr Mr 4mr M 4m w w= + w= + 2. (b) The angular momontum of a system of particles is con served when no external torque acts on the system. 3. (c) Rotational kinetic energy 2 L E L 2EI 2l \= A AA B BB L EI 1 1005 L EI4 Þ = ´ = ´= 4. (c) Angular momentum L = Iw constant \ I increases and w decreases 5. (c) Conservation of angular momentum I 1 w 1 +I 2 w 2 = (I 1 w 1 +I 2 ) w Angular velocity of system 1 1 22 12 II II w+w w= + \ Rotational kinetic energy = ( ) 2 12 1 II 2 +w ( ) ( ) ( ) 2 2 1 1 22 1 1 22 12 12 12 II II 1 II 2 II 2II w+w æö w+w =+= ç÷ + + èø 6. (d) Kinetic energy 11 E L L 2n 22 = w= ´p 2 21 1 12 L En E Ln L En \¥´Þ =´ 21 12 2 1 11 LE/2nLL L L E 2n 44 é ùéù = ´ Þ == ê úêú ë ûëû 7. (b) 2 L E 2I = . If boy stretches hgis arm then moment of inertia increases and accordingly kinetic energy of the system decreases because L = constant and 1 E I ¥ 8. (c)According to conservation of angular momentum ( ) 1 11 22 1 1 2 22 12 I I I I II II w \w = w Þ w= + w Þw= + 9. (a) 7 32 L 2EI 2 10 8 10 4 10 kg m / s -- = = ´ ´ ´ =´ 10. (d) Angular momentum, of earth about its axis of rotation, 2 2 2 2 4 MR L l MR 5 T 5T pp =w= ´= 11. (d) Angular momentum, L = mvr = 22 2 mrmr T p w = ´´ = ( ) 2 24 11 402 7 2 3.14 6 10 1.5 10 2.7 10 kg m / s 3.14 10 ´ ´´ ´´ =´- ´ 12. (c) 2 1800 2 60 60 ´ === n p wpp rad/s =´ P tw Þ 3 100 10 531 60 P Nm ´ == =- t wp 13. (a) 0 00 21 43 44 A AA LL dL dtt - - t== == D ur r 14. (c) 21 60 20 2() 60 60 æö - ç÷ èø - == nn t p p a 2 60 30 -- == pp rad / sec 2 \t=a I = 2 30 ´p = 15 Nm p - 15. (a) $ $ $ $ (7 3 ) ( 3 5) r f i j k i jk r r ur $$ t= ´ = + + ´- ++ $ $ 7 31 3 15 = - $ r i jk t $ $ (15 1) (35 3) (7 9) = - - + ++ $ i jk $$ 14 38 16 i jk = -+ $ 16. (a) 2 1000 5 ad / sec 200 r I t a=== From 0 0 5 3 15 = + = + ´= t w wa rad/s 17. (a) 2 30 15 rad/s 2 = == I t a Q 2 0 1 2 q=w +a tt DPP/ P 15 45 2 1 0 (15) (10) 2 =+ ´´ = 750 rad 18. (d) As the block remains stationary therefore For translatory equilibrium 0 x F FN = \= å and 0 y F f mg = \= å mg f O N F For rotational equilibrium 0 t= å By taking the torque of different forces about point 0 0 F f N mg uu u r uu r uu u r uuu u r t +t +t +t = As F and mg passing through point O 0 fN \t +t= uur u uu r As 00 fN t ¹ \t¹ and torque by friction and normal reaction will be in opposite direction. 19. (c) The velocity of the top point of the wheel is twice that of centre of mass and the speed of centre of mass is same for both the wheels (Angular speeds are different). 20. (d) 2 21 4500 1200 2 2() 60 rad/s 10 - æö ç÷ èø - == nn t p p a 2 3300 2 3 60 de gre e 60 102 s p =´ p 2 1980 degree/s a= 21. (b) 2 0 1 2 =+tt qwa Þ = q 100 rad \ Number of revolution 100 16 2 == p (approx.) 22. (a) As mechanical contact is not made, total angular momentum remains constant. \ Iw 0 = constant Differentiating both sides, D (Iw 0 ) = 0 00 I I0 Þ Dw +w D= I 0 I DwD Þ += w 0 0 I I Dw D Þ =- w Also, 0 0 I I Dw D =- w 2R I 2R R IR D DD æö =-= ç÷ èø Q 2T =- aD 23. (a) 2 2 L EK I == (given) 1 K I \µ (If L = constant) When child stretches his arms the moment of inertia of system get doubled so kinetic energy will becomes half i.e. K/2. 24. (c). Angular impulse = change in angular momentum : Frt = L Þ L 1 < L 2 K = 2 L 2I Þ K 1 = K 2 25. (b); 26. (a); 27. (c) Drawing the F.B. D of the plank and the cylinder. N 1 f 1 mg F cos F sin q q N 1 N 2 f 2 f 1 Mg Equations of motion are F cos q – f 1 = ma ....(1) F sinq + N 1 = mg ....(2) f 1 + f 2 = MA .....(3) f 1 R – f 2 R = Ia .....(4) A = Ra .....(5) ( )( ) [ ] 2 1 4 55 4 cos 2 10 m/s 38 3 1 81 F a Mm ´´ q = == + ´ +´ Page 3 1. (a) Initial angular momentum of ring. L = Iw =Mr 2 w Final angular momentum of ring and four particles system ( ) 2 2 2' M Mr Mr 4mr M 4m w w= + w= + 2. (b) The angular momontum of a system of particles is con served when no external torque acts on the system. 3. (c) Rotational kinetic energy 2 L E L 2EI 2l \= A AA B BB L EI 1 1005 L EI4 Þ = ´ = ´= 4. (c) Angular momentum L = Iw constant \ I increases and w decreases 5. (c) Conservation of angular momentum I 1 w 1 +I 2 w 2 = (I 1 w 1 +I 2 ) w Angular velocity of system 1 1 22 12 II II w+w w= + \ Rotational kinetic energy = ( ) 2 12 1 II 2 +w ( ) ( ) ( ) 2 2 1 1 22 1 1 22 12 12 12 II II 1 II 2 II 2II w+w æö w+w =+= ç÷ + + èø 6. (d) Kinetic energy 11 E L L 2n 22 = w= ´p 2 21 1 12 L En E Ln L En \¥´Þ =´ 21 12 2 1 11 LE/2nLL L L E 2n 44 é ùéù = ´ Þ == ê úêú ë ûëû 7. (b) 2 L E 2I = . If boy stretches hgis arm then moment of inertia increases and accordingly kinetic energy of the system decreases because L = constant and 1 E I ¥ 8. (c)According to conservation of angular momentum ( ) 1 11 22 1 1 2 22 12 I I I I II II w \w = w Þ w= + w Þw= + 9. (a) 7 32 L 2EI 2 10 8 10 4 10 kg m / s -- = = ´ ´ ´ =´ 10. (d) Angular momentum, of earth about its axis of rotation, 2 2 2 2 4 MR L l MR 5 T 5T pp =w= ´= 11. (d) Angular momentum, L = mvr = 22 2 mrmr T p w = ´´ = ( ) 2 24 11 402 7 2 3.14 6 10 1.5 10 2.7 10 kg m / s 3.14 10 ´ ´´ ´´ =´- ´ 12. (c) 2 1800 2 60 60 ´ === n p wpp rad/s =´ P tw Þ 3 100 10 531 60 P Nm ´ == =- t wp 13. (a) 0 00 21 43 44 A AA LL dL dtt - - t== == D ur r 14. (c) 21 60 20 2() 60 60 æö - ç÷ èø - == nn t p p a 2 60 30 -- == pp rad / sec 2 \t=a I = 2 30 ´p = 15 Nm p - 15. (a) $ $ $ $ (7 3 ) ( 3 5) r f i j k i jk r r ur $$ t= ´ = + + ´- ++ $ $ 7 31 3 15 = - $ r i jk t $ $ (15 1) (35 3) (7 9) = - - + ++ $ i jk $$ 14 38 16 i jk = -+ $ 16. (a) 2 1000 5 ad / sec 200 r I t a=== From 0 0 5 3 15 = + = + ´= t w wa rad/s 17. (a) 2 30 15 rad/s 2 = == I t a Q 2 0 1 2 q=w +a tt DPP/ P 15 45 2 1 0 (15) (10) 2 =+ ´´ = 750 rad 18. (d) As the block remains stationary therefore For translatory equilibrium 0 x F FN = \= å and 0 y F f mg = \= å mg f O N F For rotational equilibrium 0 t= å By taking the torque of different forces about point 0 0 F f N mg uu u r uu r uu u r uuu u r t +t +t +t = As F and mg passing through point O 0 fN \t +t= uur u uu r As 00 fN t ¹ \t¹ and torque by friction and normal reaction will be in opposite direction. 19. (c) The velocity of the top point of the wheel is twice that of centre of mass and the speed of centre of mass is same for both the wheels (Angular speeds are different). 20. (d) 2 21 4500 1200 2 2() 60 rad/s 10 - æö ç÷ èø - == nn t p p a 2 3300 2 3 60 de gre e 60 102 s p =´ p 2 1980 degree/s a= 21. (b) 2 0 1 2 =+tt qwa Þ = q 100 rad \ Number of revolution 100 16 2 == p (approx.) 22. (a) As mechanical contact is not made, total angular momentum remains constant. \ Iw 0 = constant Differentiating both sides, D (Iw 0 ) = 0 00 I I0 Þ Dw +w D= I 0 I DwD Þ += w 0 0 I I Dw D Þ =- w Also, 0 0 I I Dw D =- w 2R I 2R R IR D DD æö =-= ç÷ èø Q 2T =- aD 23. (a) 2 2 L EK I == (given) 1 K I \µ (If L = constant) When child stretches his arms the moment of inertia of system get doubled so kinetic energy will becomes half i.e. K/2. 24. (c). Angular impulse = change in angular momentum : Frt = L Þ L 1 < L 2 K = 2 L 2I Þ K 1 = K 2 25. (b); 26. (a); 27. (c) Drawing the F.B. D of the plank and the cylinder. N 1 f 1 mg F cos F sin q q N 1 N 2 f 2 f 1 Mg Equations of motion are F cos q – f 1 = ma ....(1) F sinq + N 1 = mg ....(2) f 1 + f 2 = MA .....(3) f 1 R – f 2 R = Ia .....(4) A = Ra .....(5) ( )( ) [ ] 2 1 4 55 4 cos 2 10 m/s 38 3 1 81 F a Mm ´´ q = == + ´ +´ 46 DPP/ P 15 1 1 3 1 55 3 cos 2 7.5 3 8 31 81 MF fN Mm ´´´ q = == + ´ +´ and 2 1 1 55 cos 2 2.5 3 8 31 81 MF fN Mm ´´ q = == + ´ +´ 28. (b) t= ur r dL dt and =w LI 29. (b) sin. t=q rF If q = 90° then max t= rF Unit of torque is N-m. 30. (d) Torque = Force × perpendicular distance of the line of action of force from the axis of rotation (d). Hence for a given applied force, torque or true tendency of rotation will be high for large value of d. If distance d is smaller, then greater force is required to cause the same torque, hence it is harder to open or shut down the door by applying a force near the hinge.Read More
96 videos|388 docs|105 tests
|
|
Explore Courses for NEET exam
|