Any mathematical expression which consists of numbers, variables and operations are called Algebraic Expression.
An expression can be represented on the number line.
Example1: How to represent x + 5 and x – 5 on the number line?
Sol: First, mark the distance x and then x + 5 will be 5 unit to the right of x.
In the case of x – 5 we will start from the right and move towards the negative side. x – 5 will be 5 units to the left of x.
Terms having the same variable are called Like Terms.
The terms having different variable are called, Unlike Terms.
Steps to add or Subtract Algebraic Expression
Example: Add 15p2 – 4p + 5 and 9p – 11
Sol: Write down the expressions in separate rows with like terms in the same column and add.
Example: Subtract 5a2 – 4b2 + 6b – 3 from 7a2 – 4ab + 8b2 + 5a – 3b.
Sol: For subtraction also write the expressions in different rows. But to subtract we have to change their signs from negative to positive and vice versa.
While multiplying we need to take care of some points about the multiplication of like and unlike terms.
Example
Example
1. Multiplying Two Monomials
While multiplying two polynomials the resultant variable will come by
Example
25y × 3xy = 125xy2
2. Multiplying Three or More Monomials
While multiplying three or more monomial the criterion will remain the same.
Example
4xy × 5x2y2 × 6x3y3 = (4xy × 5x2y2) × 6x3y3
= 20x3y3 × 6x3y3
= 120x3y3 × x3y3
= 120 (x3 × x3) × (y3 × y3)
= 120x6 × y6
= 120x6y6
We can do it in other way also
4xy × 5x2y2 × 6x3 y3
= (4 × 5 × 6) × (x × x2 × x3) × (y × y2 × y3)
= 120 x6y6
1. Multiplying a Monomial by a Binomial
To multiply a monomial with a binomial we have to multiply the monomial with each term of the binomial.
Example
2. Multiplication of Monomial by a trinomial
This is also the same as above.
Example
1. Multiplying a Binomial by a Binomial
We use the distributive law of multiplication in this case. Multiply each term of a binomial with every term of another binomial. After multiplying the polynomials we have to look for the like terms and combine them.
Example: Simplify (3a + 4b) × (2a + 3b)
Sol:
(3a + 4b) × (2a + 3b)
= 3a × (2a + 3b) + 4b × (2a + 3b) [distributive law]
= (3a × 2a) + (3a × 3b) + (4b × 2a) + (4b × 3b)
= 6 a2 + 9ab + 8ba + 12b2
= 6 a2 + 17ab + 12b2 [Since ba = ab]
2. Multiplying a Binomial by a Trinomial
In this also we have to multiply each term of the binomial with every term of trinomial.
Example: Simplify (p + q) (2p – 3q + r) – (2p – 3q) r.
Sol:
We have a binomial (p + q) and one trinomial (2p – 3q + r)
(p + q) (2p – 3q + r)
= p(2p – 3q + r) + q (2p – 3q + r)
= 2p2 – 3pq + pr + 2pq – 3q2 + qr
= 2p2 – pq – 3q2 + qr + pr (–3pq and 2pq are like terms)
(2p – 3q) r = 2pr – 3qr
Therefore,
(p + q) (2p – 3q + r) – (2p – 3q) r
= 2p2 – pq – 3q2 + qr + pr – (2pr – 3qr)
= 2p2 – pq – 3q2 + qr + pr – 2pr + 3qr
= 2p2 – pq – 3q2 + (qr + 3qr) + (pr – 2pr)
= 2p2 – 3q2 – pq + 4qr – pr
An identity is an equality which is true for every value of the variable but an equation is true for only some of the values of the variables.
So an equation is not an identity.
Like, x2 = 1, is valid if x is 1 but is not true if x is 2.so it is an equation but not an identity.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 – 2ab + b2
a2 – b2 = (a + b) (a - b)
(x + a) (x + b) = x2 + (a + b)x + ab
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
These identities are useful in carrying out squares and products of algebraic expressions. They give alternative methods to calculate products of numbers and so on.
Example
(4x – 3y)2
= (4x)2 – 2(4x) (3y) + (3y)2
= 16x2 – 24xy + 9y2
Example: Use the Identity (x + a) (x + b) = x2 + (a + b) x + ab to find the value of 501 × 502
Sol:
501 × 502
= (500 + 1) × (500 + 2)
= 5002 + (1 + 2) × 500 + 1 × 2
= 250000 + 1500 + 2
= 251502
79 videos|408 docs|31 tests
|
1. How do you add algebraic expressions with like terms? |
2. Can you subtract algebraic expressions with unlike terms? |
3. How do you simplify algebraic expressions before performing addition or subtraction? |
4. What is the difference between adding and subtracting algebraic expressions? |
5. Can you add or subtract algebraic expressions with different variables? |
|
Explore Courses for Class 8 exam
|