Solubility (s) and Solubility Product (Ksp)
This is generally used for sparingly soluble salts.
Solubility product (ksp) is an equilibrium constant so like all the equilibrium constants, it depends only on the temperature.
Solubility product: in a saturated solution of a salt, there exists a dynamic equilibrium between the excess of solute and the ions furnished by the part of the solute which has gone in solution.
Solution
AgCl(s) [Ag+][Cl–]
AgCl Ag+ + Cl–
a-s s s
Ksp = S2
Simple Solubility Ax By xAy+ + yB–x
Ksp = (xs)x (ys)y = xx.yy (s)x+y
Ksp = xx.yy(s)x+y |
Factors Affecting Solubility:
Because of the presence of common ion the solubility of the salt decreases.
AgCl Ag+ + Cl–
- s s
Added NaCl, which is having common ion as that of sparingly soluble salt, AgCl.
NaCl → Na+ + Cl–
C 0 0
- C C
So, added electrolyte, will decrease the solubility of AgCl
AgCl Ag+ + Cl–
S' S'
Ksp = S' (S' + C)
Assumption: C >>> S'
Hence S' + C »C
Ksp = s1 x C
S1 = ksp / C
When sparingly soluble salts are added in water simultaneously, there will be two simultaneous equilibria in the solution
AgCl Ag+ + Cl–
S1+S2 S1 Ksp1
AgCl Ag+ + Br–
S1+S2 S2 Ksp2
Ksp1 = (s1 + s2)s1
Ksp2 = (s1 + s2)s2
Adding equation (1) and (2)
K1P1+K1P2 = (S1+s2)
From (1)
When the ion from sparingly soluble salt, undergo hydrolysis Hence, we have to follow different procedure to calculate solubility of these salts.
AgCN(s) Ag+ + CN–
s1 s-x
CN– + H2O HCN + OH–
s-x x x
ksp=[Ag+] [CN–] … 1
… 2
Multiply (1) and (2)
Ksp x Kh = [Ag+] [HCN]
Since [HCN] = [OH–]
Effect of complex formation:
AgCl(s) Ag+ (ag) + Cl– (ag)
Ag+ + 2NH3 [Ag(NH3)2]+ Kf = stability constant
S C
- C-2S S
Reverse the Reaction,
[Ag(NH3)2]+ Ag+ + 2 NH3
S - C-2S
s-x x C-2s+2x
Since, Kd is very very low,
Hence, c – 2s + 2x ≈ C – 2S
Ksp = x × s … 1
Put value of Kd in eq. 1
S =
Concept of Precipitation: Less the value of S, less the solubility of the salt..Hence, more the extent of precipitation of salt.
AgCl Ag+ + Cl–
With the knowledge of solubility product of a sparingly soluble substance, we can predict whether under certain given conditions that substance would be precipitated or not. It may be remembered that a substance gets precipitated when the ionic product i.e. the product of concentrations of its ions present in a solution exceeds the solubility product of the substance,
Ki = [Ag+] [Cl–]
If Kip>Ksp Precipitation Occurs
If Kip<Ksp Unsaturated Solution
If kip = Ksp Saturated Solution
Example : 10–4 Molar Mg(NO3)2 with pH = 9 and if Ksp (Mg(OH)2) = 8.9 × 10–12
Will precipitation takes place or not.
At what minimum value of pH precipitation will occur.
a) Mg(NO3)2 → Mg2+ + 2 NO3–
10–4 - -
- 10–4 10–4
Mg(OH2) Mg2+ + 20H–
Kip = (10–4) (10–5)2
Ki = 10–14
Ksp of Mg(OH)2 = 8.9 × 10–12
Ksp>Kip
Hence solution is unsaturated. No precipitation will occur.
For Mg (OH)2
Ksp = [Mg2+][OH–]2
8.9 × 10–12 = 10–4[OH–]2
[OH–] = 2.9 × 10–4
pOH = 3.83
pH = 10.47
Hence pH should be greater than 10.47 for the precipitation to occur.
Preferential precipitation of an insoluble salt:
Silver chloride is insoluble or sparingly soluble, to be more accurate. So is silver iodide. The question arises as to what would happen if potassium iodide solution is added to silver chloride.
AgCl + KI KCl + AgI
Sparingly Sparingly
soluble soluble
Would the reaction take place towards the right, i.e. would the precipitated of siler chloride change into the precipitate of silver iodide.
For answer, it is necessary to look their respective solubility products.
Solubility product of silver chloride
Ksp (AgCl) = [Ag+] [Cl–] = 1.56 × 10–10
And that of silver iodide
Ksp(AgI) = (Ag+)(I–) = 0.94 × 10–16
Example : 0.1 Molar concentration of Cl– ion and 10–3 molar chromate CrO42– ions are present in a solution. If AgNO3 is added which will precipitate first
If Ksp (AgCl)=10–12
Ksp (Ag2CrO4) 10–10
2. What will be the concentration of Cl– ions when Ag2CrO4 begins to precipitate. Also find the percentage of Cl– left with respect to original.
Solution AgCl Ag+ + Cl–
- S S
Ksp = S2
S = 10–6
For Ag2CrO4
Ag2CrO4 2Ag+ + CrO42–
Ksp = (2S)2S
10–10 = 4S3
S = (0.25 × 10–10) 1/3
S = 2.9 × 10–4
Since, solubility of AgClis less than solubility of Ag2CrO4.
Then, obviously AgCl will precipitate first
b) When Ag2CrO4 begins to precipitate, concentration of CrO42– would be
10–10 = [Ag+]2[CrO42–]
10–10 = [Ag+] × 10–3
[Ag+] = 3.1 × 10–4
For AgCl
Ksp = [Ag+][Cl–]
10–12 = 2.9 × 10–4 [Cl–]
Cl– = 3.4 × 10–9
Percentage of Cl– left =
Percentage of Cl– left = 3.4 × 10–6 %
83 videos|142 docs|67 tests
|
1. What is solubility and how is it determined? |
2. What factors affect the solubility of a solute? |
3. What is solubility product and how is it calculated? |
4. How does the common ion effect influence solubility? |
5. How can solubility and solubility product be used to determine the concentration of ions in a solution? |
|
Explore Courses for Chemistry exam
|