JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Solved Example: Application of Derivative

Solved Example: Application of Derivative | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


JEE Solved Example on Application of Derivative 
JEE Mains 
Q1:  The angle at which the curve ?? = ?? ?? ????
 intersects the ?? -axis is 
(A) ?????? ?? ??? ?? 
(B) ?????? ?? ?(?? ?? ) 
(C) ?????? ?? ?(v?? + ?? ?? ) 
(D) None 
Ans: (B) ?? = ?? ?? ????
? ?? '
= ?? 2
?? ????
? ?? = ?? ,?? = 0 
y
'
= k
2
?? tan??? =
1
k
2
? cot??? = k
2
?? ?? = cot
-1
?k
2
 
 
Q2:  The angle between the tangent lines to the graph of the function ?? (?? )= ?
?? ?? ?(?? ?? - ?? )???? at the 
point where the graph cuts the ?? -axis is - 
(A) ?? /?? 
(B) ?? /?? 
(C) ?? /?? 
(D) ?? /?? 
 Ans: (D) ?? (?? )= ? ?
?? 2
?(2?? - 5)= ?? 2
- 5?? |
2
?? = ?? 2
- 5?? - 4 + 10
?= ?? 2
- 5?? + 6 = (?? - 2)(?? - 3)
?? 1
(?? )= 2?? - 5
[?? = 2,?? (?? )= 0]?? '
(?? )= -1
[?? = 3,?? (?? )= 0]?? '
(?? )= 1
 
Angle between the 2 tangents is 90
°
 
 (as m
1
 m
2
= -1 )  
 
Q3:  If a variable tangent to the curve ?? ?? ?? = ?? ?? makes intercepts ?? ,?? on ?? and ?? axis respectively 
then the value of ?? ?? ?? is 
(A) ???? ?? ?? 
(B) 
?? ????
?? ?? 
(C) 
????
?? ?? ?? 
(D) 
?? ?? ?? ?? 
Ans: (C) ?? 2
?? = ?? 3
 
Page 2


JEE Solved Example on Application of Derivative 
JEE Mains 
Q1:  The angle at which the curve ?? = ?? ?? ????
 intersects the ?? -axis is 
(A) ?????? ?? ??? ?? 
(B) ?????? ?? ?(?? ?? ) 
(C) ?????? ?? ?(v?? + ?? ?? ) 
(D) None 
Ans: (B) ?? = ?? ?? ????
? ?? '
= ?? 2
?? ????
? ?? = ?? ,?? = 0 
y
'
= k
2
?? tan??? =
1
k
2
? cot??? = k
2
?? ?? = cot
-1
?k
2
 
 
Q2:  The angle between the tangent lines to the graph of the function ?? (?? )= ?
?? ?? ?(?? ?? - ?? )???? at the 
point where the graph cuts the ?? -axis is - 
(A) ?? /?? 
(B) ?? /?? 
(C) ?? /?? 
(D) ?? /?? 
 Ans: (D) ?? (?? )= ? ?
?? 2
?(2?? - 5)= ?? 2
- 5?? |
2
?? = ?? 2
- 5?? - 4 + 10
?= ?? 2
- 5?? + 6 = (?? - 2)(?? - 3)
?? 1
(?? )= 2?? - 5
[?? = 2,?? (?? )= 0]?? '
(?? )= -1
[?? = 3,?? (?? )= 0]?? '
(?? )= 1
 
Angle between the 2 tangents is 90
°
 
 (as m
1
 m
2
= -1 )  
 
Q3:  If a variable tangent to the curve ?? ?? ?? = ?? ?? makes intercepts ?? ,?? on ?? and ?? axis respectively 
then the value of ?? ?? ?? is 
(A) ???? ?? ?? 
(B) 
?? ????
?? ?? 
(C) 
????
?? ?? ?? 
(D) 
?? ?? ?? ?? 
Ans: (C) ?? 2
?? = ?? 3
 
?? =
?? 3
?? 2
? ?? '
=
-2?? 3
?? 3
?? -
?? 3
?? 2
= -
2?? 3
?? 3
(?? - ?? )[?? = ???? =
?? 3
?? 2
]
?? intercept =
3?? 2
= ???? intercept 
?=
3?? 3
?? 2
= ?? ? ?? 2
?? =
9?? 2
4
×
3?? 3
?? 2
=
27?? 3
4
[?? ]
 
 
 
Q4:  Consider the function ?? (?? )= {
?? ?????? ?
?? ?? for ?? > ?? ?? for ?? = ?? then the number of points in (?? ,?? ) 
where the derivative ?? '
(?? ) vanishes, is 
(A) 0 
(B) 1 
(C) 2 
(D) infinite 
Ans: (D) ?? (?? )= {
?? sin?(
?? ?? ) ?? > 0
0 ?? = 0
 
?? '
(?? )= ?? cos ?(
?? ?? )(
-?? ?? 2
)+ sin?
?? ?? = 0
?? ?? = tan?(
?? ?? ) 
?? ? [0,1] infinite solution 
 
 
Q5:  The tangent to the graph of the function ?? = ?? (?? ) at the point with abscissa ?? = ?? forms with 
the ?? -axis an angle of ?? /?? and at the point with abscissa ?? = ?? at an angle of ?? /?? , then the value 
of the integral, ?
?? ?? ??? '
(?? ).?? ''
(?? )???? is equal to 
(A) 1 
(B) 0 
(C) -v?? 
(D) -1 
[assume ?? '
(?? ) to be continuous] 
 Ans: (D) ?? = ?? (?? )? ?
?? ?? ??? 1
'
(?? )?? ?
''
(?? )
?? ?? = ?? '
(?? )?
?? ?? ??? ''
(?? )- ?
?? ?? ??? ''
(?? )?? '
(?? )
?? 2?? = [?? '
(?? )]
2
?? 2?? = [?? '
?? ]
2
[?? '
?? ]
2
?? 2?? = -2 ? ?? = -1
 
 
Page 3


JEE Solved Example on Application of Derivative 
JEE Mains 
Q1:  The angle at which the curve ?? = ?? ?? ????
 intersects the ?? -axis is 
(A) ?????? ?? ??? ?? 
(B) ?????? ?? ?(?? ?? ) 
(C) ?????? ?? ?(v?? + ?? ?? ) 
(D) None 
Ans: (B) ?? = ?? ?? ????
? ?? '
= ?? 2
?? ????
? ?? = ?? ,?? = 0 
y
'
= k
2
?? tan??? =
1
k
2
? cot??? = k
2
?? ?? = cot
-1
?k
2
 
 
Q2:  The angle between the tangent lines to the graph of the function ?? (?? )= ?
?? ?? ?(?? ?? - ?? )???? at the 
point where the graph cuts the ?? -axis is - 
(A) ?? /?? 
(B) ?? /?? 
(C) ?? /?? 
(D) ?? /?? 
 Ans: (D) ?? (?? )= ? ?
?? 2
?(2?? - 5)= ?? 2
- 5?? |
2
?? = ?? 2
- 5?? - 4 + 10
?= ?? 2
- 5?? + 6 = (?? - 2)(?? - 3)
?? 1
(?? )= 2?? - 5
[?? = 2,?? (?? )= 0]?? '
(?? )= -1
[?? = 3,?? (?? )= 0]?? '
(?? )= 1
 
Angle between the 2 tangents is 90
°
 
 (as m
1
 m
2
= -1 )  
 
Q3:  If a variable tangent to the curve ?? ?? ?? = ?? ?? makes intercepts ?? ,?? on ?? and ?? axis respectively 
then the value of ?? ?? ?? is 
(A) ???? ?? ?? 
(B) 
?? ????
?? ?? 
(C) 
????
?? ?? ?? 
(D) 
?? ?? ?? ?? 
Ans: (C) ?? 2
?? = ?? 3
 
?? =
?? 3
?? 2
? ?? '
=
-2?? 3
?? 3
?? -
?? 3
?? 2
= -
2?? 3
?? 3
(?? - ?? )[?? = ???? =
?? 3
?? 2
]
?? intercept =
3?? 2
= ???? intercept 
?=
3?? 3
?? 2
= ?? ? ?? 2
?? =
9?? 2
4
×
3?? 3
?? 2
=
27?? 3
4
[?? ]
 
 
 
Q4:  Consider the function ?? (?? )= {
?? ?????? ?
?? ?? for ?? > ?? ?? for ?? = ?? then the number of points in (?? ,?? ) 
where the derivative ?? '
(?? ) vanishes, is 
(A) 0 
(B) 1 
(C) 2 
(D) infinite 
Ans: (D) ?? (?? )= {
?? sin?(
?? ?? ) ?? > 0
0 ?? = 0
 
?? '
(?? )= ?? cos ?(
?? ?? )(
-?? ?? 2
)+ sin?
?? ?? = 0
?? ?? = tan?(
?? ?? ) 
?? ? [0,1] infinite solution 
 
 
Q5:  The tangent to the graph of the function ?? = ?? (?? ) at the point with abscissa ?? = ?? forms with 
the ?? -axis an angle of ?? /?? and at the point with abscissa ?? = ?? at an angle of ?? /?? , then the value 
of the integral, ?
?? ?? ??? '
(?? ).?? ''
(?? )???? is equal to 
(A) 1 
(B) 0 
(C) -v?? 
(D) -1 
[assume ?? '
(?? ) to be continuous] 
 Ans: (D) ?? = ?? (?? )? ?
?? ?? ??? 1
'
(?? )?? ?
''
(?? )
?? ?? = ?? '
(?? )?
?? ?? ??? ''
(?? )- ?
?? ?? ??? ''
(?? )?? '
(?? )
?? 2?? = [?? '
(?? )]
2
?? 2?? = [?? '
?? ]
2
[?? '
?? ]
2
?? 2?? = -2 ? ?? = -1
 
 
Q6: The subnormal at any point on the curve ????
?? = ?? ?? ·?? is constant for: 
(A) ?? = ?? 
(B) ?? = ?? 
(C) ?? = -?? 
(D) No value of ?? 
Ans: (C) Subnormal = ?? ????
????
 
???? ?? ?? -1
?? '
+ ?? ?? = 0
?? '
=
-?? ????
|?? ????
????
| =
?? 2
????
 it is constant for ?
?? 2+?? ?? ?? +1
?? 
Constant for n = -2 
 
 
Q7:  Equation of the line through the point (?? /?? ,?? ) and tangent to the parabola ?? =
?? ?? ?? + ?? and 
secant to the curve ?? = v?? - ?? ?? is 
(A) ?? ?? + ?? ?? - ?? = ?? 
(B) ?? ?? + ?? ?? - ?? = ?? 
(C) ?? - ?? = ?? 
(D) None of these 
Ans: (A) ?? = -
?? 2
2
+ 2 
?? '
= -?? 
??
?? - 2
?? -
1
2
= ?? ?? ?? - 2 = ?? (?? -
1
2
) ?
-?? 2
2
=
2????
2
-
?? 2
 
?? ?? 2
+ 2???? - ?? = 0
?? ?? =
-2?? ± v4?? 2
+ 4?? 2
= 0
 For ?? = 0
?? 4?? 2
+ 4?? = 0 ? ?? = 0,-1
?? ?? - 2 = -?? +
1
2
?? ?? + ?? =
5
2
 
 
 
Page 4


JEE Solved Example on Application of Derivative 
JEE Mains 
Q1:  The angle at which the curve ?? = ?? ?? ????
 intersects the ?? -axis is 
(A) ?????? ?? ??? ?? 
(B) ?????? ?? ?(?? ?? ) 
(C) ?????? ?? ?(v?? + ?? ?? ) 
(D) None 
Ans: (B) ?? = ?? ?? ????
? ?? '
= ?? 2
?? ????
? ?? = ?? ,?? = 0 
y
'
= k
2
?? tan??? =
1
k
2
? cot??? = k
2
?? ?? = cot
-1
?k
2
 
 
Q2:  The angle between the tangent lines to the graph of the function ?? (?? )= ?
?? ?? ?(?? ?? - ?? )???? at the 
point where the graph cuts the ?? -axis is - 
(A) ?? /?? 
(B) ?? /?? 
(C) ?? /?? 
(D) ?? /?? 
 Ans: (D) ?? (?? )= ? ?
?? 2
?(2?? - 5)= ?? 2
- 5?? |
2
?? = ?? 2
- 5?? - 4 + 10
?= ?? 2
- 5?? + 6 = (?? - 2)(?? - 3)
?? 1
(?? )= 2?? - 5
[?? = 2,?? (?? )= 0]?? '
(?? )= -1
[?? = 3,?? (?? )= 0]?? '
(?? )= 1
 
Angle between the 2 tangents is 90
°
 
 (as m
1
 m
2
= -1 )  
 
Q3:  If a variable tangent to the curve ?? ?? ?? = ?? ?? makes intercepts ?? ,?? on ?? and ?? axis respectively 
then the value of ?? ?? ?? is 
(A) ???? ?? ?? 
(B) 
?? ????
?? ?? 
(C) 
????
?? ?? ?? 
(D) 
?? ?? ?? ?? 
Ans: (C) ?? 2
?? = ?? 3
 
?? =
?? 3
?? 2
? ?? '
=
-2?? 3
?? 3
?? -
?? 3
?? 2
= -
2?? 3
?? 3
(?? - ?? )[?? = ???? =
?? 3
?? 2
]
?? intercept =
3?? 2
= ???? intercept 
?=
3?? 3
?? 2
= ?? ? ?? 2
?? =
9?? 2
4
×
3?? 3
?? 2
=
27?? 3
4
[?? ]
 
 
 
Q4:  Consider the function ?? (?? )= {
?? ?????? ?
?? ?? for ?? > ?? ?? for ?? = ?? then the number of points in (?? ,?? ) 
where the derivative ?? '
(?? ) vanishes, is 
(A) 0 
(B) 1 
(C) 2 
(D) infinite 
Ans: (D) ?? (?? )= {
?? sin?(
?? ?? ) ?? > 0
0 ?? = 0
 
?? '
(?? )= ?? cos ?(
?? ?? )(
-?? ?? 2
)+ sin?
?? ?? = 0
?? ?? = tan?(
?? ?? ) 
?? ? [0,1] infinite solution 
 
 
Q5:  The tangent to the graph of the function ?? = ?? (?? ) at the point with abscissa ?? = ?? forms with 
the ?? -axis an angle of ?? /?? and at the point with abscissa ?? = ?? at an angle of ?? /?? , then the value 
of the integral, ?
?? ?? ??? '
(?? ).?? ''
(?? )???? is equal to 
(A) 1 
(B) 0 
(C) -v?? 
(D) -1 
[assume ?? '
(?? ) to be continuous] 
 Ans: (D) ?? = ?? (?? )? ?
?? ?? ??? 1
'
(?? )?? ?
''
(?? )
?? ?? = ?? '
(?? )?
?? ?? ??? ''
(?? )- ?
?? ?? ??? ''
(?? )?? '
(?? )
?? 2?? = [?? '
(?? )]
2
?? 2?? = [?? '
?? ]
2
[?? '
?? ]
2
?? 2?? = -2 ? ?? = -1
 
 
Q6: The subnormal at any point on the curve ????
?? = ?? ?? ·?? is constant for: 
(A) ?? = ?? 
(B) ?? = ?? 
(C) ?? = -?? 
(D) No value of ?? 
Ans: (C) Subnormal = ?? ????
????
 
???? ?? ?? -1
?? '
+ ?? ?? = 0
?? '
=
-?? ????
|?? ????
????
| =
?? 2
????
 it is constant for ?
?? 2+?? ?? ?? +1
?? 
Constant for n = -2 
 
 
Q7:  Equation of the line through the point (?? /?? ,?? ) and tangent to the parabola ?? =
?? ?? ?? + ?? and 
secant to the curve ?? = v?? - ?? ?? is 
(A) ?? ?? + ?? ?? - ?? = ?? 
(B) ?? ?? + ?? ?? - ?? = ?? 
(C) ?? - ?? = ?? 
(D) None of these 
Ans: (A) ?? = -
?? 2
2
+ 2 
?? '
= -?? 
??
?? - 2
?? -
1
2
= ?? ?? ?? - 2 = ?? (?? -
1
2
) ?
-?? 2
2
=
2????
2
-
?? 2
 
?? ?? 2
+ 2???? - ?? = 0
?? ?? =
-2?? ± v4?? 2
+ 4?? 2
= 0
 For ?? = 0
?? 4?? 2
+ 4?? = 0 ? ?? = 0,-1
?? ?? - 2 = -?? +
1
2
?? ?? + ?? =
5
2
 
 
 
 
Q8:  Two curves ?? ?? :?? = ?? ?? - ?? and ?? ?? :?? = ?? ?? ?? ,?? ? ?? intersect each other at two different point. 
The tangent drawn to ?? ?? at one of the point of intersection ?? = (?? , ?? ?? ),(?? > ?? ) meets ?? ?? again 
at ?? (?? ,?? ?? )(?? ?? ? ?? ?? ) . The value of ' ?? ' is 
(A) 4 
(B) 3 
(C) 2 
(D) 1 
Ans: (D) ?? 1
?? = ?? 2
- 3 and ?? 2
?? = ?? ?? 2
 
?? ?? ?? 2
= ?? 2
- 3
?? ?? = ±
v
3
1 - ?? = ?? ? ?? =
3
1 - ?? - 3 =
3?? 1 - ?? ??
?? - ?? 1
?? - ?? = 2???? ? ?? - ?? 1
= 2???? (?? - ?? )
?? ?? 2
- 3 - ?? 1
= 2???? (?? - ?? )
?? -2 - ?? 1
= 2???? (1 - ?? )
?? 2
= -2
?? 1
= ?? ?? 2
?? -2 - ?? ?? 2
= 2???? - 2?? ?? 2
?? ?? ?? 2
- 2???? - 2 = 0
?? ?? (
3
1 - ?? )- 2 = 2?? v
3
1 - ?? ?
5?? - 2
v1 - ?? = 2?? v3
?? 5?? - 2 = 2?? v3 - 3?? ?? =
2
3
,?? = 1
 
 
 
Q9:  Number of roots of the equation ?? ?? · ?? ?? |?? |
= ?? is: 
(A) 2 
(B) 4 
(C) 6 
(D) Zero 
Ans: (B) ?? 2
= ?? |?? -2
 
No. of roots are 4 
 
 
 
 
Page 5


JEE Solved Example on Application of Derivative 
JEE Mains 
Q1:  The angle at which the curve ?? = ?? ?? ????
 intersects the ?? -axis is 
(A) ?????? ?? ??? ?? 
(B) ?????? ?? ?(?? ?? ) 
(C) ?????? ?? ?(v?? + ?? ?? ) 
(D) None 
Ans: (B) ?? = ?? ?? ????
? ?? '
= ?? 2
?? ????
? ?? = ?? ,?? = 0 
y
'
= k
2
?? tan??? =
1
k
2
? cot??? = k
2
?? ?? = cot
-1
?k
2
 
 
Q2:  The angle between the tangent lines to the graph of the function ?? (?? )= ?
?? ?? ?(?? ?? - ?? )???? at the 
point where the graph cuts the ?? -axis is - 
(A) ?? /?? 
(B) ?? /?? 
(C) ?? /?? 
(D) ?? /?? 
 Ans: (D) ?? (?? )= ? ?
?? 2
?(2?? - 5)= ?? 2
- 5?? |
2
?? = ?? 2
- 5?? - 4 + 10
?= ?? 2
- 5?? + 6 = (?? - 2)(?? - 3)
?? 1
(?? )= 2?? - 5
[?? = 2,?? (?? )= 0]?? '
(?? )= -1
[?? = 3,?? (?? )= 0]?? '
(?? )= 1
 
Angle between the 2 tangents is 90
°
 
 (as m
1
 m
2
= -1 )  
 
Q3:  If a variable tangent to the curve ?? ?? ?? = ?? ?? makes intercepts ?? ,?? on ?? and ?? axis respectively 
then the value of ?? ?? ?? is 
(A) ???? ?? ?? 
(B) 
?? ????
?? ?? 
(C) 
????
?? ?? ?? 
(D) 
?? ?? ?? ?? 
Ans: (C) ?? 2
?? = ?? 3
 
?? =
?? 3
?? 2
? ?? '
=
-2?? 3
?? 3
?? -
?? 3
?? 2
= -
2?? 3
?? 3
(?? - ?? )[?? = ???? =
?? 3
?? 2
]
?? intercept =
3?? 2
= ???? intercept 
?=
3?? 3
?? 2
= ?? ? ?? 2
?? =
9?? 2
4
×
3?? 3
?? 2
=
27?? 3
4
[?? ]
 
 
 
Q4:  Consider the function ?? (?? )= {
?? ?????? ?
?? ?? for ?? > ?? ?? for ?? = ?? then the number of points in (?? ,?? ) 
where the derivative ?? '
(?? ) vanishes, is 
(A) 0 
(B) 1 
(C) 2 
(D) infinite 
Ans: (D) ?? (?? )= {
?? sin?(
?? ?? ) ?? > 0
0 ?? = 0
 
?? '
(?? )= ?? cos ?(
?? ?? )(
-?? ?? 2
)+ sin?
?? ?? = 0
?? ?? = tan?(
?? ?? ) 
?? ? [0,1] infinite solution 
 
 
Q5:  The tangent to the graph of the function ?? = ?? (?? ) at the point with abscissa ?? = ?? forms with 
the ?? -axis an angle of ?? /?? and at the point with abscissa ?? = ?? at an angle of ?? /?? , then the value 
of the integral, ?
?? ?? ??? '
(?? ).?? ''
(?? )???? is equal to 
(A) 1 
(B) 0 
(C) -v?? 
(D) -1 
[assume ?? '
(?? ) to be continuous] 
 Ans: (D) ?? = ?? (?? )? ?
?? ?? ??? 1
'
(?? )?? ?
''
(?? )
?? ?? = ?? '
(?? )?
?? ?? ??? ''
(?? )- ?
?? ?? ??? ''
(?? )?? '
(?? )
?? 2?? = [?? '
(?? )]
2
?? 2?? = [?? '
?? ]
2
[?? '
?? ]
2
?? 2?? = -2 ? ?? = -1
 
 
Q6: The subnormal at any point on the curve ????
?? = ?? ?? ·?? is constant for: 
(A) ?? = ?? 
(B) ?? = ?? 
(C) ?? = -?? 
(D) No value of ?? 
Ans: (C) Subnormal = ?? ????
????
 
???? ?? ?? -1
?? '
+ ?? ?? = 0
?? '
=
-?? ????
|?? ????
????
| =
?? 2
????
 it is constant for ?
?? 2+?? ?? ?? +1
?? 
Constant for n = -2 
 
 
Q7:  Equation of the line through the point (?? /?? ,?? ) and tangent to the parabola ?? =
?? ?? ?? + ?? and 
secant to the curve ?? = v?? - ?? ?? is 
(A) ?? ?? + ?? ?? - ?? = ?? 
(B) ?? ?? + ?? ?? - ?? = ?? 
(C) ?? - ?? = ?? 
(D) None of these 
Ans: (A) ?? = -
?? 2
2
+ 2 
?? '
= -?? 
??
?? - 2
?? -
1
2
= ?? ?? ?? - 2 = ?? (?? -
1
2
) ?
-?? 2
2
=
2????
2
-
?? 2
 
?? ?? 2
+ 2???? - ?? = 0
?? ?? =
-2?? ± v4?? 2
+ 4?? 2
= 0
 For ?? = 0
?? 4?? 2
+ 4?? = 0 ? ?? = 0,-1
?? ?? - 2 = -?? +
1
2
?? ?? + ?? =
5
2
 
 
 
 
Q8:  Two curves ?? ?? :?? = ?? ?? - ?? and ?? ?? :?? = ?? ?? ?? ,?? ? ?? intersect each other at two different point. 
The tangent drawn to ?? ?? at one of the point of intersection ?? = (?? , ?? ?? ),(?? > ?? ) meets ?? ?? again 
at ?? (?? ,?? ?? )(?? ?? ? ?? ?? ) . The value of ' ?? ' is 
(A) 4 
(B) 3 
(C) 2 
(D) 1 
Ans: (D) ?? 1
?? = ?? 2
- 3 and ?? 2
?? = ?? ?? 2
 
?? ?? ?? 2
= ?? 2
- 3
?? ?? = ±
v
3
1 - ?? = ?? ? ?? =
3
1 - ?? - 3 =
3?? 1 - ?? ??
?? - ?? 1
?? - ?? = 2???? ? ?? - ?? 1
= 2???? (?? - ?? )
?? ?? 2
- 3 - ?? 1
= 2???? (?? - ?? )
?? -2 - ?? 1
= 2???? (1 - ?? )
?? 2
= -2
?? 1
= ?? ?? 2
?? -2 - ?? ?? 2
= 2???? - 2?? ?? 2
?? ?? ?? 2
- 2???? - 2 = 0
?? ?? (
3
1 - ?? )- 2 = 2?? v
3
1 - ?? ?
5?? - 2
v1 - ?? = 2?? v3
?? 5?? - 2 = 2?? v3 - 3?? ?? =
2
3
,?? = 1
 
 
 
Q9:  Number of roots of the equation ?? ?? · ?? ?? |?? |
= ?? is: 
(A) 2 
(B) 4 
(C) 6 
(D) Zero 
Ans: (B) ?? 2
= ?? |?? -2
 
No. of roots are 4 
 
 
 
 
 
Q10:  The ?? -intercept of the tangent at any arbitrary point of the curve 
?? ?? ?? +
?? ?? ?? = ?? is proportional 
to 
(A) Square of the abscissa of the point of tangency 
(B) Square root of the abscissa of the point of tangency 
(C) Cube of the abscissa of the point of tangency 
(D) Cube root of the abscissa of the point of tangency 
Ans: (C) -
?? ?? 3
-
?? ?? 3
?? '
= 0 at any general point 
?? ?? intercept 
?? - ?? (?? 2
- ?? )+ ?? ????
=
?? ?? 3
????
=
?? 3
?? = [?? ]
 
 
 
Q11: The line which is parallel to ?? -axis and crosses the curve ?? = v?? at an angle of 
?? ?? is 
(A) ?? = -?? /?? 
(B) ?? = ?? /?? 
(C) ?? = ?? /?? 
(D) ?? = ?? /?? 
Ans: (D) ?? = 0 
?? = ?? ?? = v?? ?? 1
=
1
2v?? = 1;??? =
1
4
?? =
1
2
= ?? 
 
 
 
Q12: The lines tangent to the curves ?? ?? - ?? ?? ?? + ?? ?? - ?? ?? = ?? and ?? ?? - ?? ?? ?? ?? + ?? ?? + ?? ?? = ?? at 
the origin intersect at an angle ?? equal to 
(A) ?? /?? 
(B) ?? /?? 
(C) ?? /?? 
(D) ?? /?? 
Ans: (D) ?? 3
- ?? 2
?? + 5?? - 2?? = 0 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

study material

,

Free

,

MCQs

,

Sample Paper

,

ppt

,

pdf

,

practice quizzes

,

Summary

,

Exam

,

Solved Example: Application of Derivative | Mathematics (Maths) for JEE Main & Advanced

,

Solved Example: Application of Derivative | Mathematics (Maths) for JEE Main & Advanced

,

Solved Example: Application of Derivative | Mathematics (Maths) for JEE Main & Advanced

,

Objective type Questions

,

Extra Questions

,

video lectures

,

past year papers

,

Previous Year Questions with Solutions

,

Viva Questions

,

Semester Notes

,

shortcuts and tricks

,

mock tests for examination

,

Important questions

;