Courses

# The Direct Stiffness Method: Truss Analysis - 7 GATE Notes | EduRev

## GATE : The Direct Stiffness Method: Truss Analysis - 7 GATE Notes | EduRev

Page 1

The nodes and members are numbered in Fig. 25.6b. The global co-ordinate
axes are shown at node 3. At node 2, roller is supported on inclined support.
Hence it is required to use nodal co-ordinates " " y x - at node 2 so that
4
u could be
set to zero. All the possible displacement degrees of freedom are also shown in
the figure. In the first step calculate member stiffness matrix.

Member 1: . 00 . 5 , 87 . 6 , 13 . 143
"
m L
x x
= ° = ° = ? ? Nodal points 1-2
12 . 0 " ; 993 . 0 " ; 6 . 0 ; 80 . 0 = = = - = m l m l .

[]
4
3
2
1
014 . 0 119 . 0 072 . 0 096 . 0
119 . 0 986 . 0 596 . 0 794 . 0
072 . 0 596 . 0 36 . 0 48 . 0
096 . 0 794 . 0 48 . 0 64 . 0
0 . 5
4 3 2 1
1
?
?
?
?
?
?
?
?
?
?
?
?
-
-
- - -
-
=
EA
k
(1)
Page 2

The nodes and members are numbered in Fig. 25.6b. The global co-ordinate
axes are shown at node 3. At node 2, roller is supported on inclined support.
Hence it is required to use nodal co-ordinates " " y x - at node 2 so that
4
u could be
set to zero. All the possible displacement degrees of freedom are also shown in
the figure. In the first step calculate member stiffness matrix.

Member 1: . 00 . 5 , 87 . 6 , 13 . 143
"
m L
x x
= ° = ° = ? ? Nodal points 1-2
12 . 0 " ; 993 . 0 " ; 6 . 0 ; 80 . 0 = = = - = m l m l .

[]
4
3
2
1
014 . 0 119 . 0 072 . 0 096 . 0
119 . 0 986 . 0 596 . 0 794 . 0
072 . 0 596 . 0 36 . 0 48 . 0
096 . 0 794 . 0 48 . 0 64 . 0
0 . 5
4 3 2 1
1
?
?
?
?
?
?
?
?
?
?
?
?
-
-
- - -
-
=
EA
k
(1)

Member 2: . 00 . 4 , 30 , 0
"
m L
x x
= ° = ° = ? ? Nodal points 2-3
50 . 0 " ; 866 . 0 " ; 0 ; 1 = = = = m l m l .

Page 3

The nodes and members are numbered in Fig. 25.6b. The global co-ordinate
axes are shown at node 3. At node 2, roller is supported on inclined support.
Hence it is required to use nodal co-ordinates " " y x - at node 2 so that
4
u could be
set to zero. All the possible displacement degrees of freedom are also shown in
the figure. In the first step calculate member stiffness matrix.

Member 1: . 00 . 5 , 87 . 6 , 13 . 143
"
m L
x x
= ° = ° = ? ? Nodal points 1-2
12 . 0 " ; 993 . 0 " ; 6 . 0 ; 80 . 0 = = = - = m l m l .

[]
4
3
2
1
014 . 0 119 . 0 072 . 0 096 . 0
119 . 0 986 . 0 596 . 0 794 . 0
072 . 0 596 . 0 36 . 0 48 . 0
096 . 0 794 . 0 48 . 0 64 . 0
0 . 5
4 3 2 1
1
?
?
?
?
?
?
?
?
?
?
?
?
-
-
- - -
-
=
EA
k
(1)

Member 2: . 00 . 4 , 30 , 0
"
m L
x x
= ° = ° = ? ? Nodal points 2-3
50 . 0 " ; 866 . 0 " ; 0 ; 1 = = = = m l m l .

[]
4
3
6
5
014 . 0 119 . 0 072 . 0 096 . 0
119 . 0 986 . 0 596 . 0 794 . 0
072 . 0 596 . 0 36 . 0 48 . 0
096 . 0 794 . 0 48 . 0 64 . 0
0 . 4
4 3 6 5
2
?
?
?
?
?
?
?
?
?
?
?
?
-
-
- - -
-
=
EA
k
(2)

Member 3: . 00 . 3 , 90 m L
x
= ° = ? , 1 ; 0 = = m l Nodal points 3-1
.

[]
2
1
6
5
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0
0 . 3
2 1 6 5
3
?
?
?
?
?
?
?
?
?
?
?
?
-
-
=
EA
k
(3)

For the present problem, the global stiffness matrix is of the order() 6 6 × . The
global stiffness matrix for the entire truss is.

[]
6
5
4
3
2
1
333 . 0 0 0 0 333 . 0 0
0 25 . 0 125 . 0 217 . 0 0 0
0 125 . 0 065 . 0 132 . 0 014 . 0 . 019 . 0
0 217 . 0 132 . 0 385 . 0 119 . 0 159 . 0
333 . 0 0 014 . 0 119 . 0 405 . 0 096 . 0
0 0 019 . 0 159 . 0 096 . 0 128 . 0
6 5 4 3 2 1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
-
- -
- - - -
-
= EA k
(4)

Writing load-displacement equation for the truss for unconstrained degrees of
freedom,

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
-
=
?
?
?
?
?
?
?
?
?
? -
3
2
1
385 . 0 119 . 0 159 . 0
119 . 0 405 . 0 096 . 0
159 . 0 096 . 0 128 . 0
0
5
5
u
u
u
(5)

Solving ,

AE
u
AE
u
AE
u
12 . 33
;
728 . 3
;
408 . 77
3 2 1
= =
-
=
(6)

Page 4

The nodes and members are numbered in Fig. 25.6b. The global co-ordinate
axes are shown at node 3. At node 2, roller is supported on inclined support.
Hence it is required to use nodal co-ordinates " " y x - at node 2 so that
4
u could be
set to zero. All the possible displacement degrees of freedom are also shown in
the figure. In the first step calculate member stiffness matrix.

Member 1: . 00 . 5 , 87 . 6 , 13 . 143
"
m L
x x
= ° = ° = ? ? Nodal points 1-2
12 . 0 " ; 993 . 0 " ; 6 . 0 ; 80 . 0 = = = - = m l m l .

[]
4
3
2
1
014 . 0 119 . 0 072 . 0 096 . 0
119 . 0 986 . 0 596 . 0 794 . 0
072 . 0 596 . 0 36 . 0 48 . 0
096 . 0 794 . 0 48 . 0 64 . 0
0 . 5
4 3 2 1
1
?
?
?
?
?
?
?
?
?
?
?
?
-
-
- - -
-
=
EA
k
(1)

Member 2: . 00 . 4 , 30 , 0
"
m L
x x
= ° = ° = ? ? Nodal points 2-3
50 . 0 " ; 866 . 0 " ; 0 ; 1 = = = = m l m l .

[]
4
3
6
5
014 . 0 119 . 0 072 . 0 096 . 0
119 . 0 986 . 0 596 . 0 794 . 0
072 . 0 596 . 0 36 . 0 48 . 0
096 . 0 794 . 0 48 . 0 64 . 0
0 . 4
4 3 6 5
2
?
?
?
?
?
?
?
?
?
?
?
?
-
-
- - -
-
=
EA
k
(2)

Member 3: . 00 . 3 , 90 m L
x
= ° = ? , 1 ; 0 = = m l Nodal points 3-1
.

[]
2
1
6
5
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0
0 . 3
2 1 6 5
3
?
?
?
?
?
?
?
?
?
?
?
?
-
-
=
EA
k
(3)

For the present problem, the global stiffness matrix is of the order() 6 6 × . The
global stiffness matrix for the entire truss is.

[]
6
5
4
3
2
1
333 . 0 0 0 0 333 . 0 0
0 25 . 0 125 . 0 217 . 0 0 0
0 125 . 0 065 . 0 132 . 0 014 . 0 . 019 . 0
0 217 . 0 132 . 0 385 . 0 119 . 0 159 . 0
333 . 0 0 014 . 0 119 . 0 405 . 0 096 . 0
0 0 019 . 0 159 . 0 096 . 0 128 . 0
6 5 4 3 2 1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
-
- -
- - - -
-
= EA k
(4)

Writing load-displacement equation for the truss for unconstrained degrees of
freedom,

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
- -
-
=
?
?
?
?
?
?
?
?
?
? -
3
2
1
385 . 0 119 . 0 159 . 0
119 . 0 405 . 0 096 . 0
159 . 0 096 . 0 128 . 0
0
5
5
u
u
u
(5)

Solving ,

AE
u
AE
u
AE
u
12 . 33
;
728 . 3
;
408 . 77
3 2 1
= =
-
=
(6)

Now reactions are evaluated from the equation

?
?
?
?
?
?
?
?
?
?
-
?
?
?
?
?
?
?
?
?
?
-
- =
?
?
?
?
?
?
?
?
?
?
12 . 33
728 . 3
40 . 77
1
0 333 . 0 0
217 . 0 0 0
132 . 0 014 . 0 . 019 . 0
6
5
4
AE
AE
p
p
p
(6)

45 6
2.85 kN ; 7.19 kN ; 1.24 kN pp p ==- =-

Summary
Sometimes the truss is supported on a roller placed on an oblique plane. In such
situations, the direct stiffness method as discussed in the previous lesson needs
to be properly modified to make the displacement perpendicular to the roller
support as zero. In the present approach, the inclined support is handled in the
analysis by suitably modifying the member stiffness matrices of all members
meeting at the inclined support. A few problems are solved to illustrate the
procedure.

Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

## Structural Analysis

30 videos|122 docs|28 tests

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

;