Grade 12 Exam  >  Grade 12 Notes  >  Biology for Grade 12  >  The Structure of ATP

The Structure of ATP | Biology for Grade 12 PDF Download

Introduction

  • All organisms require a constant supply of energy to maintain their cells and stay alive
  • This energy is required:
    • In anabolic reactions – building larger molecules from smaller molecules
    • To move substances across the cell membrane (active transport) or to move substances within the cell
    • In animals, energy is required:
    • For muscle contraction – to coordinate movement at the whole-organism level
    • In the conduction of nerve impulses, as well as many other cellular processes
  • In all known forms of life, ATP from respiration is used to transfer energy in all energy-requiring processes in cells
  • This is why ATP is known as the universal energy currency
  • Adenosine Triphosphate (ATP) is a nucleotide
    • The monomers of DNA and RNA are also nucleotide

ATP

  • Adenosine triphosphate (ATP) is the energy-carrying molecule that provides the energy to drive many processes inside living cells
  • ATP is another type of nucleic acid and hence it is structurally very similar to the nucleotides that make up DNA and RNA
  • It is a phosphorylated nucleotide
  • Adenosine (a nucleoside) can be combined with one, two or three phosphate groups
    • One phosphate group = adenosine monophosphate (AMP)
    • Two phosphate groups = adenosine diphosphate (ADP)
    • Three phosphate groups = adenosine triphosphate (ATP)
      The Structure of ATP | Biology for Grade 12

The structure of AMP, ADP and ATP

Hydrolysis & Synthesis of ATP

Hydrolysis of ATP

  • Energy released during the reactions of respiration is transferred to the molecule adenosine triphosphate (ATP)
  • ATP is a small and soluble molecule that provides a short-term store of chemical energy that cells can use to do work
  • It is vital in linking energy-requiring and energy-yielding reactions
  • ATP is described as a universal energy currency
    • Universal: It is used in all organisms
    • Currency: Like money, it can be used for different purposes (reactions) and is reused countless times
  • The use of ATP as an ‘energy-currency’ is beneficial for many reasons:
    • The hydrolysis of ATP can be carried out quickly and easily wherever energy is required within the cell by the action of just one enzyme, ATPase
    • A useful (not too small, not too large) quantity of energy is released from the hydrolysis of one ATP molecule - this is beneficial as it reduces waste but also gives the cell control over what processes occur
    • ATP is relatively stable at cellular pH levels

Hydrolysis of ATP

  • Hydrolysis of ATP to adenosine diphosphate (ADP) and an inorganic phosphate group (Pi) is catalysed by the enzyme ATP hydrolase sometimes called 'ATPase'
  • The hydrolysis of ATP can be coupled to energy-requiring reactions within cells such as:
    • The active transport of ions up a concentration gradient
    • Enzyme controlled reactions that require energy
    • Muscle contraction and muscle fibre movement
  • As ADP forms free energy is released that can be used for processes within a cell eg. DNA synthesis
    • Removal of one phosphate group from ATP releases 30.8 kJ mol -1 of energy, forming ADP
    • Removal of a second phosphate group from ADP also releases 30.8 kJ mol-1 of energy, forming AMP
    • Removal of the third and final phosphate group from AMP releases 14.2 kJ mol-1 of energy, forming adenosine
  • The inorganic phosphate released during the hydrolysis of ATP can be used to phosphorylate other compounds, often making them more reactive

Features of ATP Table

The Structure of ATP | Biology for Grade 12

ATP Synthesis

  • On average humans use more than 50 kg of ATP in a day but only have a maximum of ~ 200g of ATP in their body at any given time
  • Organisms cannot build up large stores of ATP and it rarely passes through the cell surface membrane
  • This means the cells must make ATP as and when they need it
  • ATP is formed when ADP is combined with an inorganic phosphate (Pi) group by the enzyme ATP synthase
    • This is an energy-requiring reaction
    • Water is released as a waste product (therefore ATP synthesis is a condensation reaction)

Types of ATP synthesis

  • ATP is made during the reactions of respiration and photosynthesis
    • All of an animal's ATP comes from respiration
  • ATP can be made in two different ways:
    • Substrate-linked phosphorylation (occurs in the glycolysis stage of respiration)
    • Chemiosmosis (occurs in the electron transport chain stage of respiration)

The Properties of Water

Water in Cells

  • Water is of great biological importance. It is the medium in which all metabolic reactions take place in cells. Between 70% to 95% of the mass of a cell is water
  • As 71% of the Earth’s surface is covered in water it is a major habitat for organisms
  • Water is composed of atoms of hydrogen and oxygen. One atom of oxygen combines with two atoms of hydrogen by sharing electrons (covalent bonding)
  • Although water as a whole is electrically neutral the sharing of the electrons is uneven between the oxygen and hydrogen atoms
    • The oxygen atom attracts the electrons more strongly than the hydrogen atoms, resulting in a weak negatively charged region on the oxygen atom (δ-) and a weak positively charged region on the hydrogen atoms(δ+), this also results in the asymmetrical shape
  • This separation of charge due to the electrons in the covalent bonds being unevenly shared is called a dipole. When a molecule has one end that is negatively charged and one end that is positively charged it is also a polar molecule
  • Water is a polar molecule

The Structure of ATP | Biology for Grade 12

The covalent bonds of water make it a polar molecule

  • Hydrogen bonds form between water molecules
    • As a result of the polarity of water hydrogen bonds form between the positive and negatively charged regions of adjacent water molecules
  • Hydrogen bonds are weak, when there are few, so they are constantly breaking and reforming. However when there are large numbers present they form a strong structure
  • Hydrogen bonds contribute to the many properties water molecules have that make them so important to living organisms:
    • An excellent solvent – many substances can dissolve in water
    • A relatively high specific heat capacity
    • A relatively high latent heat of vaporisation
    • Water is less dense when a solid
    • Water has high surface tension and cohesion
    • It acts as a reagent

The Structure of ATP | Biology for Grade 12

The polarity of water molecules allows hydrogen bonds to form between adjacent water molecules

  • Water has many essential roles in living organisms due to its properties:
    • The polarity of water molecules
    • The presence and number of hydrogen bonds between water molecules

Solvent

  • As water is a polar molecule many ions (e.g. sodium chloride) and covalently bonded polar substances (e.g. glucose) will dissolve in it
    • This allows chemical reactions to occur within cells (as the dissolved solutes are more chemically reactive when they are free to move about)
    • Metabolites can be transported efficiently (except non-polar molecules which are hydrophobic)

The Structure of ATP | Biology for Grade 12

Due to its polarity water is considered a universal solvent

High specific heat capacity

  • The specific heat capacity of a substance is the amount of thermal energy required to raise the temperature of 1kg of that substance by 1°C. Water’s specific heat capacity is 4200 J/kg°C
  • Specific heat capacity is a measure of the energy required to raise the temperature of 1 kg of a substance by 1oC
  • Water has a high specific heat capacity of 4200 J / Kg oC meaning a relatively large amount of energy is required to raise its temperature
  • The high specific heat capacity is due to the many hydrogen bonds present in water. It takes a lot of thermal energy to break these bonds and a lot of energy to build them, thus the temperature of water does not fluctuate greatly
  • The advantage for living organisms is that it:
    • Provides suitable habitats
    • Is able to maintain a constant temperature as water is able to absorb a lot of heat without big temperature fluctuations
    • This is vital in maintaining temperatures that are optimal for enzyme activity
  • Water in blood plasma is also vital in transferring heat around the body, helping to maintain a fairly constant temperature
    • As blood passes through more active (‘warmer’) regions of the body, heat energy is absorbed but the temperature remains fairly constant
    • Water in tissue fluid also plays an important regulatory role in maintaining a constant body temperature

Latent heat of vaporisation

  • In order to change state (from liquid to gas) a large amount of thermal energy must be absorbed by water to break the hydrogen bonds and evaporate
  • This is an advantage for living organisms as only a little water is required to evaporate for the organism to lose a great amount of heat
  • This provides a cooling effect for living organisms, for example the transpiration from leaves or evaporation of water in sweat on the skin

Properties of Water & its Role in Living Organisms Table

The Structure of ATP | Biology for Grade 12Cohesion and adhesion

  • Hydrogen bonds between water molecules allows for strong cohesion between water molecules
    • This allows columns of water to move through the xylem of plants and through blood vessels in animals
    • This also enables surface tension where a body of water meets the air, these hydrogen bonds occur between the top layer of water molecules to create a sort of film on the body of water (this is what allows insects such as pond skaters to float)
  • Water is also able to hydrogen bond to other molecules, such as cellulose, which is known as adhesion
    • This also enables water to move up the xylem due to transpiration

Inorganic Ions

  • An ion is an atom (or sometimes a group of atoms) that has an electrical charge
    • An ion that has a +ve charge is known as a cation
    • An ion that has a -ve charge is known as an anion
  • An inorganic ion is an ion that does not contain carbon
  • Inorganic ions play an important role in many essential cellular processes
  • Inorganic ions occur in solution in the cytoplasm and body fluids of organisms
    • Some occur in high concentrations and others in very low concentrations
    • The concentration of certain ions can fluctuate and can be used in cell signalling and neuronal transmission
    • Each type of inorganic ion has a specific role, depending on its properties

Properties & Roles of Inorganic Ions

  • You should know the following inorganic ions, as well as their properties and roles in the body:
    • Hydrogen ions (H+)
    • Iron ions (Fe2+/Fe3+)
    • Sodium ions (Na+)
    • Phosphate ions (PO43-)
    • Calcium ions (Ca2+)

Hydrogen ions

  • Hydrogen ions are protons
  • The concentration of H+ in a solution determines the pH
  • There is an inverse relationship between the pH value and the hydrogen ion concentration
    • The more H+ ions present, the lower the pH (the more acidic the solution)
    • The fewer Hions present, the higher the pH (the more alkaline the solution)
  • The concentration of H+ is therefore very important for enzyme-controlled reactions, which are all affected by pH
    • The fluids in the body normally have a pH value of approximately 7.4
    • The maintenance of this normal pH is essential for many of the metabolic processes that take place within cells
    • Changes in pH can affect enzyme structure
    • For example, abnormal levels of hydrogen ions can interact with the side-chains of amino acids and change the secondary and tertiary structures of the proteins that make up enzymes
    • This can cause denaturation of enzymes

Iron ions

  • There are actually two versions of iron ions (known as oxidation states)
    • Iron (II) ions, also known as ferrous ions (Fe2+)
    • Iron (III) ions, also known as ferric ions (Fe3+)
  • Iron ions are essential as they can bind oxygen
    • Haemoglobin is the large protein in red blood cells that is responsible for transporting oxygen around the body
    • Haemoglobin is made up of four polypeptide chains that each contain one Fe2+
    • This Fe2+ is a key component in haemoglobin as it binds to oxygen
    • Myoglobin in muscles functions in a similar way (it is an oxygen-binding protein) but is only made up of one polypeptide chain (containing one Fe2+)
  • Iron ions are also essential as they are involved in the transfer of electrons during respiration and photosynthesis, so they are key to the biological generation of energy
    • Iron ions are an essential component of cytochromes (that are themselves a component of electron transport chains)
    • Cytochrome c contains an iron ion that is essential to its function
    • During the electron transport process, this iron ion switches between the Fe3+ and Fe2+ oxidation states, which allows for electrons to be accepted and donated

Sodium Ions

  • Na+ is required for the transport of glucose and amino acids across cell-surface membranes (e.g. in the small intestine)
    • Glucose and amino acid molecules can only enter cells (through carrier proteins) alongside Na+
    • This process is known as co-transport
    • First, Na+ is actively transported out of the epithelial cells that line the villi
    • The Na+ concentration inside the epithelial cells is now lower than the Na+ concentration in the lumen of the small intestine
    • Na+ now re-enters the cells (moving down the concentration gradient) through co-transport proteins on the surface membrane of the epithelial cells, allowing glucose and amino acids to enter at the same time
  • Na+ is also required for the transmission of nerve impulses
Phosphate Ions
  • PO43- attaches to other molecules to form phosphate groups, which are an essential component of DNA, RNA and ATP
  • In DNA and RNA, the phosphate groups allow individual nucleotides to join up (to form polynucleotides)
  • In ATP, the bonds between phosphate groups store energy
    • These phosphate groups can be easily attached or detached
    • When the bonds between phosphate groups are broken, they release a large amount of energy, which can be used for cellular processes
  • Phosphates are also found in phospholipids, which are key components of the phospholipid bilayer of cell membranes

Calcium Ions

  • Ca2+ is essential in the movement of organisms:
    • In synapses, calcium ions regulate the transmission of impulses from neurone to neurone
  • Ca2+ also stimulates muscle contraction
    • When an impulse reaches a muscle fibre, Ca2+ is released from the sarcoplasmic reticulum
    • This Ca2+ binds to troponin C, removing the tropomyosin from myosin-binding sites on actin
    • This allows actin-myosin cross-bridges to form when the muscle fibre contracts
  • Ca2+ can also help to regulate protein channels, which affects the permeability of cell membranes
  • Many enzymes are activated by Ca2+, making these ions key regulators in many biological reactions
  • The presence of Ca2+ is also necessary for the formation of blood clots (it is known as a clotting factor)
The document The Structure of ATP | Biology for Grade 12 is a part of the Grade 12 Course Biology for Grade 12.
All you need of Grade 12 at this link: Grade 12
122 videos|161 docs|138 tests

Top Courses for Grade 12

122 videos|161 docs|138 tests
Download as PDF
Explore Courses for Grade 12 exam

Top Courses for Grade 12

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Summary

,

Previous Year Questions with Solutions

,

MCQs

,

video lectures

,

mock tests for examination

,

The Structure of ATP | Biology for Grade 12

,

past year papers

,

Important questions

,

study material

,

shortcuts and tricks

,

Exam

,

Viva Questions

,

Objective type Questions

,

The Structure of ATP | Biology for Grade 12

,

practice quizzes

,

pdf

,

ppt

,

The Structure of ATP | Biology for Grade 12

,

Free

,

Semester Notes

,

Extra Questions

;