The document Theodolite, Compass & Traverse Surveying Notes | EduRev is a part of the Civil Engineering (CE) Course Geomatics Engineering (Surveying).

All you need of Civil Engineering (CE) at this link: Civil Engineering (CE)

**Traverse Surveying****Latitude and Departure**

The latitude and departure of the line AB of length l and reduced bearing θ are given by

L = +lcosθ

D = lsinθ

**Latitude:** Projection of a line on N-S direction is called latitude.**Departure:** Projection of a line on E-W direction is called departure.

**Latitude and departure in various quadrants**

Here, l_{1}, l_{2}, l_{3}and l_{4}are the length of line OA, OB, OC and OD respectively.

**Independent Coordinate**

**Closing Error**

If sum of latitude, ∑L ≠ 0

and sum of departure ∑D ≠ 0

then there is a closing error

Closing error,

the direction of closing error (δ)**Adjustment of Closing Error**

- Sum of all internal angles of a closed traverse = (2n - 4) × 90°

where n = no. of sides - Sum of all deflection angles = 360°

i.e. θ_{A}+ θ_{B}+ θ_{C}+ θ_{D}+ θ_{E}= 360° - Sum of latitude, ∑L = 0

sum of departure, ∑D = 0

**Balancing the Traverse**

**Bowditch method**

Error in linear measurement ∝√l

Where l = length of a line

Error in angular measurement ∝1/√l

correction to a particular line

Here, l = length of a line,

C_{L}= correction in latitude of a line

∑_{L}= total error in latitude,

C_{D}= correction in departure of a line

∑_{D}= total error in departure

∑_{l}= sum of length of all lines**Transit method**

Correction in the latitude of all line,

C_{L}= (L/L_{T}) x ∑L

Correction in the departure of all line,

C_{D}= (D/D_{T}) x ∑D

Here, ∑L = Total error in latitude

∑D = total error in departure

L = latitude of a line

D = departure of a line

L_{T}= sum of all latitude without considering sign

D_{T }= Sum of all departure without considering sign.**Axis method**

Correction to any length

i.e. Correction of

**Triangulation**

**Definition: **The horizontal control in Geodetic survey is established either by triangulation or by precise traverse. In triangulation, the system consists of a number of inter-connected triangles in which the length of only one line is called the base line and the angles of the triangle are measured very precisely.

**Criterion of strength of figure**

The strength of figure is a factor to be considered in establishing a triangulation system for which the computation can be maintained within a desired degree of precision.

The square of a probable error (L^{2}) that would occur in the sixth place of the logarithm of any side,

L_{2}= (4/3)d^{2}R

d = Probable error of an observed direction in seconds

D = Number of directions observed (forward and/or backward)

δ_{A}= Difference per second in the sixth place of a logarithms of the sine of the distance angle A of each triangle

δ_{B}= Same as δ_{A}but for the distance angle B

C = Number of angles and side conditions

C = (n’ – s’ + 1) + (n – 2s + 3)

n = Total number of lines

n’ = Number of lines observed in both directions

s = Total number of stations

s’ = Number of occupied stations

(n’ – s’ + 1) = Number of angle conditions

(n’ – 2δ + 3) = Number of side conditions

**Signals and Towers**

- A signal is a device erected to define the exact position of an observed station.
**(i) Non Luminous Signals:**Diameter of signal in cm = 1.3 D to 1.9 D Height of signal in cm = 13.3 D

where D = distance in km (Length of sight) for non-luminous signals**(ii) Luminous or Sun Signals:**Used when the length of sight distance > 30 Km**Phase of Signals:**It is the error of bisection which arises, when the signal is partly in light and partly in shade. **Correction****(i)**when observation is made on the bright portion.

Phase correction

α = Angle which the direction of sun makes with line of sight.

r = radius of the signal.

D = Distance of sight.**(ii)**when the observation is made on the bright line:

**Routine of Triangulation Survey**

**The routine of triangulation survey generally consists of the following operations:**

- Reconnaissance
- Erection of singles and towers
- Measurement of base lines
- Measurement of horizontal angles
- Astronomical of horizontal angles
- Computations

**Intervisibility and Height of Stations**

**The distance between the stations:**If here is no obstruction due to intervening ground, the distance of the visible horizon from a station of known elevation above datum is given by

where, h = height of the station above datum

D = distance to the visible horizon

R = mean radius of the earth**Relative elevation of stations:**If there is no obstruction due to intervening ground, the formula may be used to get the necessary elevation of a station at distance, so that it may be visible from another station of known elevation Let, h_{1}= known elevation of station A above datum

h_{2}= required elevation of B above datum

D_{1}= distance from A to the point of tangency

D_{2}= distance from B to the point of tangency

D = the known distance between A and B

then, h_{1}= 0.6728D^{2}_{1}^{}

where D_{1}is in km and h1 is in meters, D_{2}= D – D_{1}

h2 = 0.06728D^{2}_{2 }meters**Profile of the intervening ground:**In the reconnaissance, the elevations and positions of peaks in the intervening ground between the proposed stations should be determined. A comparison of their elevations should be made to the elevation of the proposed line of sight to ascertain whether the line of sight is clear off the obstruction or not. The problem can be solved by using the principles discussed in the factors (1) and (2) above, or by solutions suggested by Captain G.T. McCaw. The former method will be clear from the worked out examples.

**Captain GT McCaw’s Method**

Let, h_{1} = height of station a above datum

h_{2 }= height of station B above datum

h = height of line of sight at the obstruction C

2s = distance between the two stations A and B

(s + x) = distance of obstruction C from A

(s – X) = distance of obstruction C from B

ζ = zenith distance from A to B

The height h of the line of sight at the obstruction is given by

If X, s and R are substituted in miles, and h_{1}, h_{2} and h are in feet.

and 1 - 2m/2R = 0.06728

If X, s and R are in km and h_{1}, h_{2} and h are in meters.

Offer running on EduRev: __Apply code STAYHOME200__ to get INR 200 off on our premium plan EduRev Infinity!

19 videos|15 docs|17 tests