JEE Exam  >  JEE Notes  >  DPP: Daily Practice Problems for JEE Main & Advanced  >  DPP for JEE: Daily Practice Problems- Trigonometric Functions (Solutions)

Trigonometric Functions Practice Questions - DPP for JEE

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 2


?
?
?
As  (cos x – sec x)
2
 = 0  or  positive
y = 2  or  y  2
2. (c)
Hence period = 
3. (c) Given an angle ?  which is divided into two parts A and B such
that A – B = k and A + B = ,
and tan A : tan B = k : 1, i.e. 
?
(by componendo and dividendo)
 sin ?
4. (d)   The given equation can be written as
? 
and 
5. (d) Consider tan  (1 + sec?) = tan 
Page 3


?
?
?
As  (cos x – sec x)
2
 = 0  or  positive
y = 2  or  y  2
2. (c)
Hence period = 
3. (c) Given an angle ?  which is divided into two parts A and B such
that A – B = k and A + B = ,
and tan A : tan B = k : 1, i.e. 
?
(by componendo and dividendo)
 sin ?
4. (d)   The given equation can be written as
? 
and 
5. (d) Consider tan  (1 + sec?) = tan 
=  … =       …(1)
? f
1
(?) = tan?/2 (1 + sec?) (1 + sec 2?)
= [tan ?/2 (1 + sec ?)] (1 + sec 2?)
= (tan ?) (1 + sec 2?) [from(1)]
= tan 2? [replacing ? by 2? as above]
? f
1
(?) = tan 2
1
 ? …(2)
Similarly, f
2
(?) = tan 2
2 
?, f
3
(?)
= tan 2
3
?, f
4
(?) = tan2
4
?   etc.
?
6. (b) The given expression can be written as
7. (a) We have sin a + sin ß + sin ? – sin ( a + ß + ?)
= sin a + sin ß + sin ? – sin a cos ß cos ?
– cos a sin ß cos ? – cos a cos ß sin ?
+ sin a sin ß sin ?
= sin a (1 – cos ß cos ?) + sin ß (1 – cos a cos ?)
+ sin ?(1–cos a cosß) + sin a sin ß sin ? > 0
? sin a + sin ß + sin ? > sin (a + ß + ?)
Trick :Put a = 30, ß = 30, ? = 60 and check...
?
Page 4


?
?
?
As  (cos x – sec x)
2
 = 0  or  positive
y = 2  or  y  2
2. (c)
Hence period = 
3. (c) Given an angle ?  which is divided into two parts A and B such
that A – B = k and A + B = ,
and tan A : tan B = k : 1, i.e. 
?
(by componendo and dividendo)
 sin ?
4. (d)   The given equation can be written as
? 
and 
5. (d) Consider tan  (1 + sec?) = tan 
=  … =       …(1)
? f
1
(?) = tan?/2 (1 + sec?) (1 + sec 2?)
= [tan ?/2 (1 + sec ?)] (1 + sec 2?)
= (tan ?) (1 + sec 2?) [from(1)]
= tan 2? [replacing ? by 2? as above]
? f
1
(?) = tan 2
1
 ? …(2)
Similarly, f
2
(?) = tan 2
2 
?, f
3
(?)
= tan 2
3
?, f
4
(?) = tan2
4
?   etc.
?
6. (b) The given expression can be written as
7. (a) We have sin a + sin ß + sin ? – sin ( a + ß + ?)
= sin a + sin ß + sin ? – sin a cos ß cos ?
– cos a sin ß cos ? – cos a cos ß sin ?
+ sin a sin ß sin ?
= sin a (1 – cos ß cos ?) + sin ß (1 – cos a cos ?)
+ sin ?(1–cos a cosß) + sin a sin ß sin ? > 0
? sin a + sin ß + sin ? > sin (a + ß + ?)
Trick :Put a = 30, ß = 30, ? = 60 and check...
?
8. (b) Consider 
9. (a) Let  cos a, and  sin a
? i.e. a = p/12
From the equation, r cos (? – a) = 2
? cos (? – p /12)  = cos (p/4)
? ? = 2np ± p/4 + p/12
10. (a) We have, 
? 
? Either 
or  where k is an odd integer
? 
For least positive non-integral solution
is 
11. (b) Given, 3 cos
2
A +2 cos
2
 B = 4
 = 3 sin
2
A ...(1)
and 2 cos B sin B = 3 sin A cos A
sin 2B = 3 sin A cos A ...(2)
Now,  cos (A + 2B) = cos A cos 2B – sin A sin 2B
= cos A (3 sin
2
 A) – sin A (3 sin A cos A) = 0
[using eqs. (1) and (2)]
Page 5


?
?
?
As  (cos x – sec x)
2
 = 0  or  positive
y = 2  or  y  2
2. (c)
Hence period = 
3. (c) Given an angle ?  which is divided into two parts A and B such
that A – B = k and A + B = ,
and tan A : tan B = k : 1, i.e. 
?
(by componendo and dividendo)
 sin ?
4. (d)   The given equation can be written as
? 
and 
5. (d) Consider tan  (1 + sec?) = tan 
=  … =       …(1)
? f
1
(?) = tan?/2 (1 + sec?) (1 + sec 2?)
= [tan ?/2 (1 + sec ?)] (1 + sec 2?)
= (tan ?) (1 + sec 2?) [from(1)]
= tan 2? [replacing ? by 2? as above]
? f
1
(?) = tan 2
1
 ? …(2)
Similarly, f
2
(?) = tan 2
2 
?, f
3
(?)
= tan 2
3
?, f
4
(?) = tan2
4
?   etc.
?
6. (b) The given expression can be written as
7. (a) We have sin a + sin ß + sin ? – sin ( a + ß + ?)
= sin a + sin ß + sin ? – sin a cos ß cos ?
– cos a sin ß cos ? – cos a cos ß sin ?
+ sin a sin ß sin ?
= sin a (1 – cos ß cos ?) + sin ß (1 – cos a cos ?)
+ sin ?(1–cos a cosß) + sin a sin ß sin ? > 0
? sin a + sin ß + sin ? > sin (a + ß + ?)
Trick :Put a = 30, ß = 30, ? = 60 and check...
?
8. (b) Consider 
9. (a) Let  cos a, and  sin a
? i.e. a = p/12
From the equation, r cos (? – a) = 2
? cos (? – p /12)  = cos (p/4)
? ? = 2np ± p/4 + p/12
10. (a) We have, 
? 
? Either 
or  where k is an odd integer
? 
For least positive non-integral solution
is 
11. (b) Given, 3 cos
2
A +2 cos
2
 B = 4
 = 3 sin
2
A ...(1)
and 2 cos B sin B = 3 sin A cos A
sin 2B = 3 sin A cos A ...(2)
Now,  cos (A + 2B) = cos A cos 2B – sin A sin 2B
= cos A (3 sin
2
 A) – sin A (3 sin A cos A) = 0
[using eqs. (1) and (2)]
12. (c) tan (cot x) = cot (tan x) = tan 
? cot x = n – tan x 
[  tan ?  = tan a ? ? = np + a]
? cot x + tan x = n 
? = (2n + 1) 
? = (2n + 1) 
?
? sin 2x = 
13. (a) Given f (x) = cos (log x)
?  f (xy) = cos (log xy)
f (xy) = cos [log x + log y] ....(i)
And  = cos
 = cos (log x – log y) ....(ii)
Adding (i) and (ii), we get
f (xy) +  = cos (log x + log y) + cos (log x – logy)
= 2 cos (log x). cos (log y)
?  f (xy) +  = 2 f (x). f (y)
Read More
174 docs

Top Courses for JEE

174 docs
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

video lectures

,

Semester Notes

,

Trigonometric Functions Practice Questions - DPP for JEE

,

Summary

,

Exam

,

shortcuts and tricks

,

Objective type Questions

,

Sample Paper

,

Viva Questions

,

study material

,

mock tests for examination

,

Extra Questions

,

Trigonometric Functions Practice Questions - DPP for JEE

,

Previous Year Questions with Solutions

,

Free

,

ppt

,

MCQs

,

Important questions

,

past year papers

,

pdf

,

Trigonometric Functions Practice Questions - DPP for JEE

,

practice quizzes

;