Class 8 Exam  >  Class 8 Notes  >  RD Sharma Solutions for Class 8 Mathematics  >  RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-7)

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-7) | RD Sharma Solutions for Class 8 Mathematics PDF Download

Question 1: Factorize each of the following algebraic expression:
x2 + 12x − 45
Answer 1: To factorise x2+12x45, we will find two numbers p and q such that p+q=12 and pq=45. 

Now,

15+(3)=12  
and

15×(3)=45 
Splitting the middle term 12x in the given quadratic as 3x+15x, we get: 
x2+12x45=x23x+15x45 
=(x23x)+(15x45) 
=x(x3)+15(x3) 
=(x+15)(x−3)

Question 2: Factorize each of the following algebraic expression:
40 + 3xx2
Answer 2: We have: 

40+3xx2 
(x23x40)  
To factorise (x23x40), we will find two numbers p and q such that p+q=3 and pq=40. 
Now,   
5+(8)=3  
and 5×(8)=40 Splitting the middle term 3x in the given quadratic as 5x8x, we get: 
40+3x−x2=−(x2−3x−40)
=(x2+5x8x40) 
=[(x2+5x)(8x+40)] 
=[x(x+5)8(x+5)] 
=(x8)(x+5) 
=(x+5)(x+8) 
Question 3: Factorize each of the following algebraic expression:
a2 + 3a − 88
Answer 3: 
To factorise a2+3a88, we will find two numbers p and q such that p+q=3 and pq=88. 
Now,  11+(8)=3 and 11×(8)=88Splitting the middle term 3a in the given quadratic as 11a8a, we get:a2+3a88=a2+11a8a88 =(a2+11a)(8a+88) 
=a(a+11)8(a+11) 
=(a8)(a+11) 
Question 4: Factorize each of the following algebraic expression:
a2 − 14a − 51 

Answer 4: To factorise a214a51, we will find two numbers p and q such that p+q=14 and pq=51. 
Now,  
3+(17)=14  
and

3×(17)=51 
Splitting the middle term 14a in the given quadratic as 3a17a, we get: 
a214a51=a2+3a17a51 
=(a2+3a)(17a+51) 
=a(a+3)17(a+3) 
=(a17)(a+3) 
Question 5: Factorize each of the following algebraic expression:
x2 + 14x + 45
Answer 5: To factorise x2+14x+45, we will find two numbers p and q such that p+q=14 and pq=45. 

Now, 9+5=14 and 9×5=45Splitting the middle term 14x in the given quadratic as 9x+5x, we get:x2+14x+45=x2+9x+5x+45 =(x2+9x)+(5x+45) 
=x(x+9)+5(x+9) 
=(x+5)(x+9) 
Question 6: Factorize each of the following algebraic expression:
x2 − 22x + 120
Answer 6: To factorise x222x+120, we will find two numbers p and q such that p+q=22 and pq=120. 

Now, (12)+(10)=22 and (12)×(10)=120Splitting the middle term 22x in the given quadratic as 12x10x, we get:x222x+12=x212x10x+120 =(x212x)+(10x+120) 
=x(x12)10(x12) 
=(x10)(x12) 
Question 7: Factorize each of the following algebraic expression:
x2 − 11x − 42
Answer 7: To factorise x211x42, we will find two numbers p and q such that p+q=11 and pq=42. 

Now, 
3+(14)=22  
and 3×(14)=42Splitting the middle term 11x in the given quadratic as14x+3x, we get: x211x42=x214x+3x42 =(x214x)+(3x42)=x(x14)+3(x14)=(x+3)(x14)Question 8: Factorize each of the following algebraic expression:
a2 + 2a − 3
Answer 8: To factorise a2+2a3, we will find two numbers p and q such that p+q=2 and pq=3. 

Now, 3+(1)=2 and  3×(1)=3Splitting the middle term 2a in the given quadratic asa+3a, we get:a2+2a3=a2a+3a3 =(a2a)+(3a3)=a(a1)+3(a1)=(a+3)(a1)Question 9: Factorize each of the following algebraic expression:
a2 + 14a + 48
Answer 9: To factorise a2+14a+48, we will find two numbers p and q such that p+q=14 and pq=48. 

Now, 8+6=14 and 8×6=48Splitting the middle term 14a in the given quadratic as 8a+6a, we get:a2+14a+48=a2+8a+6a+48 =(a2+8a)+(6a+48)=a(a+8)+6(a+8)=(a+6)(a+8)Question 10: Factorize each of the following algebraic expression:
x2 − 4x − 21
Answer 10: To factorise x24x21, we will find two numbers p and q such that p+q=4 and pq=21. 

Now,3+(7)=4 and 3×(7)=21Splitting the middle term 4x in the given quadratic as 7x+3x, we get:x24x21=x27x+3x21 =(x27x)+(3x21)=x(x7)+3(x7)=(x+3)(x7)Question 11: Factorize each of the following algebraic expression:
y2 + 5y − 36
Answer 11: To factorise y2+5y36, we will find two numbers p and q such that p+q=5 and pq=36. 

Now,9+(4)=5 and 9×(4)=36Splitting the middle term 5y in the given quadratic as 4y+9y, we get: y2+5y36=y24y+9y36 =(y24y)+(9y36)=y(y4)+9(y4)=(y+9)(y4)Question 12: Factorize each of the following algebraic expression:
(a2 − 5a)2 − 36
Answer 12: 
(a2−5a)2−36

=(a2−5a)2−62=[(a25a)6][(a25a)+6]=(a25a6)(a25a+6) In order to factorise a25a6, we will find two numbers p and q such that p+q=5 and pq=6 
Now, (6)+1=5 and (6)×1=6Splitting the middle term 5 in the given quadratic as 6a+a, we get:a25a6=a26a+a6                   =(a26a)+(a6)                   =a(a6)+(a6)                   =(a+1)(a6) Now, 
In order to factorise a25a+6, we will find two numbers p and q such that p+q=5 and pq=6 
Clearly,(2)+(3)=5 and (2)×(3)=6Splitting the middle term 5 in the given quadratic as 2a3a, we get:a25a+6=a22a3a+6=(a22a)(3a6)=a(a2)3(a2)=(a3)(a2) (a25a6)(a25a+6)=(a6)(a+1)(a3)(a2)=(a+1)(a2)(a3)(a6)Question 13: Factorize each of the following algebraic expression:
(a + 7)(a − 10) + 16
Answer 13:
(a+7)(a−10)+16=a210a+7a70+16=a23a54 To factorise a23a54 , we will find two numbers p and q such that p+q=3 and pq=54. 
Now, 6+(9)=3 and 6×(9)=54Splitting the middle term 3a in the given quadratic as 9a+6a, we get: a23a54=a29a+6a54 =(a29a)+(6a54)=a(a9)+6(a9)=(a+6)(a9)

Question 14: Factorize each of the following quadratic polynomials by using the method of  completing the square:
p2 + 6p + 8
Answer 14: 
p2+6p+8
=p2+6p+(6/2)2(6/2)2+8    [Adding and subtracting (6/2)2, that is, 32]
=p2+6p+3232+8=p2+2×p×3+329+8=p2+2×p×3+321=(p+3)212                              [Completing the square]=[(p+3)1][(p+3)+1]=(p+31)(p+3+1)=(p+2)(p+4)Question 15: Factorize each of the following quadratic polynomials by using the method of completing the square:
q2 − 10q + 21
Answer 15: q210q+21 

=q210q+(10/2)2(10/2)2+21   [Adding and subtracting (10/2)2, that is, 52] 
=q22×q×5+5252+21=(q5)24                                        [Completing the square]=(q5)222 =[(q−5)−2][(q−5)+2]
=(q−5−2)(q−5+2)
=(q−7)(q−3)
Question 16: Factorize each of the following quadratic polynomials by using the method of completing the square:
4y2 + 12y + 5
Answer 16: 4y2+12y+5 

=4(y2+3y+5/4)                                    [Making the coefficient of y2=1]

=4[y2+3y+(3/2)23/2)2+5/4]        [Adding and subtracting (3/2)2] 
=4[(y+3/2)2−9/4+5/4]
=4[(y+3/2)212]                                  [Completing the square]
 =4[(y+3/2)−1][(y+3/2)+1]
=4(y+3/2 −1)(y+3/2+1)
=4(y+1/2)(y+5/2)
=(2y+1)(2y+5)
Question 17: Factorize each of the following quadratic polynomials by using the method of completing the square:
p2 + 6p − 16
Answer 17: p2+6p16 

=p2+6p+(6/2)2−(6/2)2−16    [Adding and subtracting (6/2)2, that is, 32]
=p2+6p+32−9−16
=(p+3)2−25                                [Completing the square]
=(p+3)2−52
=[(p+3)−5][(p+3)+5]
=(p+3−5)(p+3+5)
=(p−2)(p+8) 
Question 18: Factorize each of the following quadratic polynomials by using the method of completing the square:
x2 + 12x + 20
Answer 18: x2+12x+20 

=x2+12x+(12/2)2−(12/2)2+20       [Adding and subtracting (12/2)2, that is, 62]
=x2+12x+6262+20=(x+6)216                                          [Completing the square]
=(x+6)242 
=[(x+6)4][(x+6)+4] 
=(x+64)(x+6+4) 
=(x+2)(x+10) 

Question 19: Factorize each of the following quadratic polynomials by using the method of completing the square:
a2 − 14a − 51
Answer 19: a214a51 

=a214a+(14/2)2(14/2)251   [Adding and subtracting (14/2)2, that is, 72] 
=a214a+727251 
=(a7)2100                                    [Completing the square] 
=(a7)2102  
=[(a7)10][(a7)+10] 
=(a710)(a7+10) 
=(a17)(a+3) 
Question 20: Factorize each of the following quadratic polynomials by using the method of completing the square:
a2 + 2a − 3
Answer 20: a2+2a3 

=a2+2a+(2/2)2(2/2)23   [Adding and subtracting (2/2)2, that is, 12]
=a2+2a+12123=(a+1)24                                    [Completing the square]=(a+1)222=[(a+1)2][(a+1)+2]=(a+12)(a+1+2)=(a1)(a+3)Question 21: Factorize each of the following quadratic polynomials by using the method of completing the square:
4x2 − 12x + 5
Answer 21: 4x212x+5 

=4(x23x+5/4)                                     [Making the coefficient of x2=1]
=4[x23x+(3/2)2(3/2)2+5/4]      [Adding and subtracting (3/2)2] 
=4[(x3/2)29/4+5/4]                                 [Completing the square]
=4[(x3/2)212]    =4[(x3/2)1][(x3/2)+1]=4(x3/2 −1)(x3/2 +1)=4(x5/2)(x 1/2)=(2x5)(2x1)Question 22: Factorize each of the following quadratic polynomials by using the method of completing the square:
y2 − 7y + 12
Answer 22: y27y+12 

=y27y+(7/2)2(7/2)2+12      [Adding and subtracting (7/2)2] 
=(y−7/2)2−49/4 + 48/4                  [Completing the square]
=(y7/2)21/4
=(y−7/2)2−(1/2)2 
=[(y7/2)1/2][(y7/2)+1/2]
=(y7/2 − 1/2)(y7/2 +1/2)
=(y−4)(y−3)  

Question 23: Factorize each of the following quadratic polynomials by using the method of completing the square:
z2 − 4z − 12
Answer 23: z24z12 

=z24z+(4/2)2(4/2)212       [Adding and subtracting (4/2)2, that is, 22] 
=z24z+222212=(z2)216                                [Completing the square]=(z2)242=[(z2)4][(z2)+4]=(z6)(z+2)

The document RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-7) | RD Sharma Solutions for Class 8 Mathematics is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8
88 docs
Related Searches

Objective type Questions

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-7) | RD Sharma Solutions for Class 8 Mathematics

,

Summary

,

Semester Notes

,

ppt

,

video lectures

,

Important questions

,

Sample Paper

,

shortcuts and tricks

,

Free

,

past year papers

,

Previous Year Questions with Solutions

,

Viva Questions

,

practice quizzes

,

pdf

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-7) | RD Sharma Solutions for Class 8 Mathematics

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-7) | RD Sharma Solutions for Class 8 Mathematics

,

MCQs

,

Exam

,

Extra Questions

,

study material

,

mock tests for examination

;