Class 8 Exam  >  Class 8 Notes  >  RD Sharma Solutions for Class 8 Mathematics  >  RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-2)

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-2) | RD Sharma Solutions for Class 8 Mathematics PDF Download

Question 1: Factorize the following:
3x − 9

Answer 1: The greatest common factor of the terms 3x and -9 of the expression 3x - 9 is 3. 
Now.
3x = 3x
and
-9 = 3.-3
Hence, the expression 3x - 9 can be factorised as 3(x - 3). 

Question 2: Factorize the following:
5x − 15x2

Answer 2: The greatest common factor of the terms 5x and 15x2 of the expression 5x - 15x2 is 5x. 
Now,
5x = 5x ×× 1 
and
-15x2 = 5x ×× -3x
Hence, the expression 5x - 15x2 can be factorised as 5x(1 - 3x). 

Question 3: Factorize the following:
20a12b2 − 15a8b4

Answer 3: The greatest common factor of the terms 20a12b2 and -15a8b4 of the expression 20a12b2 - 15a8b4 is 5a8b2.
20a12b2 = 5×4×a8×a4×b2 = 5a8×b2××4a4 and -15a8b4 = 5×-3×a8×b2×b2 = 5a8b2 ×× -3b2
Hence, the expression 20a12b2 - 15a8b4 can be factorised as 5a8b2(4a4-3b2) 

Question 4: Factorize the following:
72x6y7 − 96x7y6

Answer 4: The greatest common factor of the terms 72x6y7 and -96x7y6 of the expression 72x6y7 - 96x7y64 is 24x6y6.
Now,
72x6y7 = 24x6y6 ×× 3y
and 
-96x7y6 = 24x6y6 ×× -4x
Hence, the expression 72x6y7 - 96x7y6 can be factorised as 24x6y6(3y - 4x). 

Question 5: Factorize the following:
20x3 − 40x2 + 80x

Answer 5: The greatest common factor of the terms 20x3, -40x2 and 80x of the expression 20x3 - 40x2 + 80x is 20x.
Now,
20x3 = 20x ×× x2
-40x2 = 20x ×× -2x
and
80x = 20x ×× 4
Hence, the expression 20x3 - 40x2 + 80x can be factorised as 20x(x2 - 2x + 4). 
Question 6: Factorize the following:
2x3y2 − 4x2y3 + 8xy4

Answer 6: The greatest common factor of the terms 2x3y2, -4x2y3 and 8xy4 of the expression 2x3y2 - 4x2y3+ 8xy4y64 is 2xy2. 
Now,
2x3y2 = 2xy2  ×× x2  
-4x2y3 = 2xy2 ×× -2xy
8xy4 = 2xy×× 4y2
Hence, the expression 2x3y2 - 4x2y3 + 8xy4 can be factorised as 2xy2(x2 - 2xy + 4y2). 

Question 7: Factorize the following:
10m3n2 + 15m4n − 20m2n3

Answer 7: The greatest common factor of the terms 10m3n2, 15m4n and -20m2n3 of the expression 10m3n2 + 15m4n - 20m2n3 is 5m2n.
Now,
10m3n= 5m2×× 2mn
15m4n = 5m2×× 3m2
-20m2n= 5m2×× -4n2
Hence, 10m3n2 + 15m2n - 20m2n3 can be factorised as 5m2n(2mn + 3m2 - 4n2). 

Question 8: Factorize the following:
2a4b4 − 3a3b5 + 4a2b5

Answer 8: The greatest common factor of the terms 2a4b4, -3a3b5 and 4a2b5 of the expression 2a4b4 - 3a3b5 + 4a2b5 is a2b4.
Now,
2a4b= a2b×× 2a2
-3a3b= a2b4 ×× -3ab 
4a2b= a2b4 ×× 4b
Hence, (2a4b4 - 3a3b5 + 4a2b5) can be factorised as [a2b4(2a2 - 3ab + 4b)]. 

Question 9: Factorize the following:
28a2 + 14a2b2 − 21a4

Answer 9: The greatest common factor of the terms 28a2, 14a2b2 and 21
a4 of the expression 28a2+14a2b221a4 is 7a2. 
Also, we can write 28a2=7a2×4, 14a2b2=7a2×2b2 and 21a4=7a2×3a2. 
 28a2+14a2b221a4=7a2×4+7a2×2b27a2×3a2 
= 7a2(4+2b23a2) 
Question 10: Factorize the following:
a4b − 3a2b2 − 6ab3 

Answer 10: The greatest common factor of the terms a4b, 3a2b2 and 6ab3 of the expression a4b3a2b26ab3 is ab. 
Also, we can write a4b=ab×a3, 3a2b2=ab×3ab and 6ab3=ab×6b2. 
 a4b3a2b26ab3 = ab×a3ab×3abab×6b2 
= ab(a33ab6b2) 
Question 11: Factorize the following:
2l2mn - 3lm2n + 4lmn2 

Answer 11: The greatest common factor of the terms 2l2mn, 3lm2n and 4lmn2 of the expression 2l2mn3lm2n+4lmn2 is lmn. 
Also, we can write 2l2mn=lmn×2l, 3lm2n=lmn×3m and 4lmn2=lmn×4n. 
 2l2nm3lm2n+4lmn2=lmn×2llmn×3m+lmn×4n 
=lmn(2l3m+4n) 
Question 12: Factorize the following: 

x4y2 − x2y4 − x4y4 

Answer 12: The greatest common factor of the terms a4b, 3a2b2 and 6ab3 of the expression a4b3a2b26ab3 is ab. 
Also, we can write a4b=ab×a3, 3a2b2=ab×3ab and 6ab3=ab×6b2. 
 a4b3a2b26ab3 = ab×a3ab×3abab×6b2 
= ab(a33ab6b2) 
Question 11: Factorize the following:
2l2mn - 3lm2n + 4lmn2 

Answer 11: The greatest common factor of the terms 2l2mn, 3lm2n and 4lmn2 of the expression 2l2mn3lm2n+4lmn2 is lmn. 
Also, we can write 2l2mn=lmn×2l, 3lm2n=lmn×3m and 4lmn2=lmn×4n. 
 2l2nm3lm2n+4lmn2=lmn×2llmn×3m+lmn×4n 
=lmn(2l3m+4n) 
Question 12: Factorize the following: 

x4y2 − x2y4 − x4y4 

Answer 12: The greatest common factor of the terms x4y2, x2y4 and x4y4 of the expression x4y2x2y4x4y4 is x2y2. 
Also, we can write x4y2=x2y2×x2, x2y4=x2y2×y2 and x4y4=x2y2×x2y2.  x4y2x2y4x4y4 = x2y2×x2x2y2×y2x2y2×x2y2 
=x2y2(x2y2x2y2) 
Question 13: Factorize the following:
9x2y + 3axy 

Answer 13: The greatest common factor of the terms 9x2y and 3axy of the expression 9x2y+3axy is 3xy. 
Also, we can write 9x2y=3xy×3x and 3axy=3xy×a. 
 9x2y+3axy =3xy×3x+3xy×a 
=3xy(3x+a) 
Question 14: Factorize the following:
16m − 4m2

Answer 14: The greatest common factor of the terms 16m and 4m2 of the expression 16m4m2 is 4m. 
Also, we can write 16m=4m×4 and 4m2=4m×m.
 16m4m2=4m×44m×m 
=4m(4m) 
Question 15: Factorize the following:

−4a2 + 4ab − 4ca 

Answer 15: The greatest common factor of the terms 4a2, 4ab and 4ca of the expression4a2+4ab4ca is 4a. 
Also, we can write 4a2=4a×a, 4ab=4a×(b) and 4ca=4a×c. 
 4a2+4ab4ca=4a×a+(4a)×(b)4a×c 
=4a(ab+c) 
Question 16: Factorize the following:

x2yz + xy2z + xyz2 

Answer 16: The greatest common factor of the terms x2yz, xy2z and xyz2 of the expression x2yz+xy2z+xyz2 is xyz. 
Also, we can write x2yz=xyz×x, xy2z=xyz×y and xyz2=xyz×z. 
 x2yz+xy2z+xyz2=xyz×x+xyz×y+xyz×z 
=xyz(x+y+z) 
Question 17:  Factorize the following: 
ax2y + bxy2 + cxyz 
Answer 17: The greatest common factor of the terms ax2y, bxy2 and cxyz of the expression ax2y+bxy2+cxyz is xy. 
Also, we can write ax2y=xy×ax, bxy2=xy×by and cxyz=xy×cz.
 ax2y+bxy2+cxyz = xy×ax+xy×by+xy×cz  
=xy(ax+by+cz)

The document RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-2) | RD Sharma Solutions for Class 8 Mathematics is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8
88 docs

FAQs on RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-2) - RD Sharma Solutions for Class 8 Mathematics

1. What is factorization and why is it important in mathematics?
Ans. Factorization is the process of breaking down a number or an algebraic expression into its prime factors. It is important in mathematics because it helps us simplify and solve problems involving numbers and equations. Factorization allows us to find common factors, simplify fractions, and solve equations by factoring.
2. How do you factorize a quadratic equation?
Ans. To factorize a quadratic equation, we need to find two binomials whose product is equal to the given equation. The general form of a quadratic equation is ax^2 + bx + c = 0. We can factorize it by finding two numbers whose sum is equal to b and product is equal to ac. By using these numbers, we can write the equation as (px + q)(rx + s) = 0, where p, q, r, and s are constants.
3. Can all numbers be factorized?
Ans. Yes, all numbers can be factorized. Every number can be expressed as a product of its prime factors. Prime factors are the prime numbers that divide the given number without leaving a remainder. By repeatedly dividing the number by its prime factors, we can factorize any number into its prime factorization.
4. How do you factorize an algebraic expression with more than one term?
Ans. To factorize an algebraic expression with more than one term, we look for common factors among the terms. If there is a common factor, we can factor it out using the distributive property. For example, in the expression 2x^2 + 4x, the common factor is 2x. Factoring it out, we get 2x(x + 2).
5. What is the difference between factorization and prime factorization?
Ans. Factorization is the process of breaking down a number or an algebraic expression into its factors, which may or may not be prime. Prime factorization, on the other hand, is the process of breaking down a number into its prime factors only. Prime factors are the prime numbers that divide the given number without leaving a remainder. Prime factorization is important in mathematics as it helps us simplify fractions and solve problems involving numbers.
Related Searches

mock tests for examination

,

Summary

,

video lectures

,

MCQs

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-2) | RD Sharma Solutions for Class 8 Mathematics

,

Objective type Questions

,

ppt

,

study material

,

pdf

,

Semester Notes

,

Free

,

past year papers

,

Previous Year Questions with Solutions

,

Sample Paper

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-2) | RD Sharma Solutions for Class 8 Mathematics

,

Viva Questions

,

Extra Questions

,

practice quizzes

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-2) | RD Sharma Solutions for Class 8 Mathematics

,

Important questions

,

Exam

,

shortcuts and tricks

;