ACT Exam  >  ACT Notes  >  Biology for ACT  >  Nucleic Acids: Structure & Bonding

Nucleic Acids: Structure & Bonding | Biology for ACT PDF Download

Nucleic Acids


Nucleic Acids: Structure & Bonding | Biology for ACT
Chemical Composition

  •  Meischer discovered nucleic acids in nucleus of pus cell and called it ''nuclein''.
  • The name nucleic acid proposed by ''Altman''.

 Nucleic acids are polymer of nucleotides = nitrogen base + pentose + phosphate 


A. Nitrogenous Base

On the basis of structure, nitrogen bases are broadly of two types :

1.   Pyrimidines – Consist of one pyrimidine ring. Skeleton of ring composed of two nitrogen and four Carbon atoms e.g. Cytosine, Thymine and Uracil.

Nucleic Acids: Structure & Bonding | Biology for ACT    Nucleic Acids: Structure & Bonding | Biology for ACT    Nucleic Acids: Structure & Bonding | Biology for ACT              


2.   Purines – Consist of two rings i.e. one pyrimidine ring (2N + 4C) and one imidazole ring (2N + 3C) e.g. Adenine and Guanine.

Nucleic Acids: Structure & Bonding | Biology for ACT    Nucleic Acids: Structure & Bonding | Biology for ACT                                            


B. Pentose Sugar

Nucleic Acids: Structure & Bonding | Biology for ACT    Nucleic Acids: Structure & Bonding | Biology for ACT    Nucleic Acids: Structure & Bonding | Biology for ACT

Nitrogen base forms bond with first carbon of pentose sugar to form a nucleoside. Nitrogen of first place (N1)  forms bond with sugar in case of  Pyrimidines while in purines nitrogen of ninth place (N9) forms bond with sugar.


C. Phosphate

Phosphate forms ester bond (covalent bond) with fifth carbon of sugar to form a complete nucleotide.

Nucleic Acids: Structure & Bonding | Biology for ACT

 

Types of Nucleosides and Nucleotides:

1.   Adenine + Ribose = Adenosine

      Adenosine + Phosphate = Adenylic acid

2.   Adenine + Deoxyribose = Deoxy adenosine

      Deoxy adenosine + P = Deoxy adenylic acid  

3.   Guanine + Ribose = Guanosine

      Guanosine + P =  Guanylic acid

4.   Guanine + Deoxyribose = Deoxy guanosine

      Deoxy  guanosine + P = Deoxy guanylic acid 

5.   Cytosine + Ribose  = Cytidine

      Cytidine + P = Cytidylic acid 

6.   Cytosine + Deoxyribose = Deoxycytidine

      Deoxycytidine  + P = Deoxycytidylic acid 

7.   Uracil + Ribose = Uridine

      Uridine + P = Uridylic acid    

8.   Thymine + Deoxyribose = Deoxy thymidine

      Deoxythymidine  + P = Deoxythymidylic acid

The document Nucleic Acids: Structure & Bonding | Biology for ACT is a part of the ACT Course Biology for ACT.
All you need of ACT at this link: ACT
208 videos|226 docs|136 tests

FAQs on Nucleic Acids: Structure & Bonding - Biology for ACT

1. What are the chemical components of nucleic acids?
Ans. Nucleic acids are composed of nucleotides, which are made up of three components: a nitrogenous base (adenine, guanine, cytosine, thymine, or uracil), a pentose sugar (deoxyribose in DNA or ribose in RNA), and a phosphate group.
2. How are nucleotides bonded to form nucleic acids?
Ans. Nucleotides are bonded together through phosphodiester bonds. The phosphate group of one nucleotide is covalently bonded to the sugar group of the adjacent nucleotide, creating a backbone of alternating sugar-phosphate units.
3. What is the structure of nucleic acids?
Ans. Nucleic acids have a double-helix structure, with two polynucleotide strands running in opposite directions. The strands are held together by hydrogen bonds formed between complementary nitrogenous bases (A with T/U and G with C). The two strands are antiparallel, meaning they run in opposite directions.
4. What is the function of nucleic acids in living organisms?
Ans. Nucleic acids play a crucial role in storing and transmitting genetic information. DNA carries the genetic code necessary for the development, functioning, and reproduction of all living organisms. RNA, a type of nucleic acid, is involved in protein synthesis and gene regulation.
5. How do nucleic acids contribute to the diversity of life?
Ans. Nucleic acids are responsible for the genetic variations that exist among different organisms. Through the process of DNA replication and genetic recombination, nucleic acids enable the generation of new combinations of genetic information, leading to the diversity of traits observed in different species.
Related Searches

Previous Year Questions with Solutions

,

Viva Questions

,

MCQs

,

study material

,

pdf

,

past year papers

,

Exam

,

Objective type Questions

,

Sample Paper

,

video lectures

,

Nucleic Acids: Structure & Bonding | Biology for ACT

,

Nucleic Acids: Structure & Bonding | Biology for ACT

,

Semester Notes

,

Extra Questions

,

ppt

,

Free

,

shortcuts and tricks

,

Important questions

,

Nucleic Acids: Structure & Bonding | Biology for ACT

,

practice quizzes

,

mock tests for examination

,

Summary

;